

MZA 6010 Multi-Zone, Multi-Gas IR Analyzer (CO, CO₂, and CH₄ Gas Analyzer

with % Carbon Calculation and Optional H₂ Measurement)

Operations Manual

Please read, understand, and follow these instructions before operating this equipment. Super Systems, Inc. is not responsible for damages incurred due to a failure to comply with these instructions. If at any time there are questions regarding the proper use of this analyzer, please contact us at 513-772-0060 for assistance.

Super Systems Inc.

USA Office *Corporate Headquarters:* 7205 Edington Drive *Shipping Address:* 7245 Edington Drive Cincinnati, OH 45249 Phone: (513) 772-0060 http://www.supersystems.com

Super Systems Europe

Unit E, Tyburn Trading Estate, Ashold Farm Road, Birmingham B24 9QG UNITED KINGDOM Phone: +44 (0) 121 306 5180 http://www.supersystemseurope.com

Super Systems México

Sistemas Superiores Integrales S de RL de CV Acceso IV No. 31 Int. H Parque Industrial Benito Juarez C.P. 76120 Queretaro, Qro. Phone: +52 442 210 2459 http://www.supersystems.com.mx

Super Systems China

No. 369 XianXia Road Room 703 Shanghai, CHINA 200336 Phone: +86 21 5206 5701/2 http://www.supersystems.cn

Super Systems India Pvt. Ltd.

A-26 Mezzanine Floor, FIEE Complex, Okhla Indl. Area, Phase – 2 New Delhi, India 110 020 Phone: +91 11 41050097 http://www.supersystemsindia.com

Table of Contents	
Introduction	
Specifications	
Unpacking the Device	
Mechanical Installation	6
Enclosure Mounting	6
Wiring Connections	6
Plumbing Connections	7
Basic Operating Description	
Zones	
Default Screen	
Pump Operation	
Carbon Calculation	
Chart	
Chart Sub Menu	
Menu Lists	
Zones Overview	
Edit Active Zones	
Zones Sequence Setup	
Zones Inhibited	
Carbon Calculation	
Sensor Calibration	
Performing a Zero Calibration	
Performing a Span Calibration	
Automatic Sampling Parameters	
COF/PF Adjustment Increment	
COF/PF Adjustment Interval (minutes)	
Minimum COF / PF Value	
Maximum COF / PF Value	
COF / PF Adjustment Mode	
Minimum Temperature for sampling (0 = disabled)	. 22
Communications and Source Setup	
IP Address	
Atmosphere/Temp Sources	
Port Setup	
Instrument Setup	
Calculation Factors	
	33
Security Settings	
Analog Output Setup	
Factory Default Settings	
Other Settings	
Language Setup	
Auto Calibration Setup	
Gas Alarm Setup	
Instrument Information	
General Information	
Calibration Dates	
Tools	
Thermister Calibration	
SuperCalc	
Set User Cal / Load User Cal	
Analog Input Calibration	
Shut Down Interface	
Select Part Numbers and Internal Components	
Warranty	. 45

Revision History	46
Appendix A: Plumbing Diagram	47
Appendix B: Inputs/Outputs on the MZA 6010	
Appendix C: Register Map	
Appendix D: Configuration Parameters	

Introduction

The Model MZA 6010 is a Multi-Gas IR analyzer intended for analysis of gases in multiple zones of a furnace. It measures Carbon Monoxide (CO), Carbon Dioxide (CO₂) and Natural Gas (CH₄) typically found in an endothermic atmosphere. The measurement of these gases, combined with furnace temperature information, allows the MZA 6010 to calculate the percent Carbon (%C) of the measured gas. A Hydrogen (H_2) sensor can also be incorporated as an option to provide a more complete picture of the measured gas.

CAUTION!

Do not use an MZA 6010 for gas analysis with $\rm NH_3$ -containing gas. Any use of an MZA 6010 with $\rm NH_3$ -containing gas will void the product warranty.

The MZA 6010 is built as a system made up of enclosures. Typically, there will be two or three enclosures in one MZA 6010 system. One enclosure—the interface/IR enclosure—houses the touch screen interface, IR cell, analog output cards, digital inputs, and digital outputs. A second enclosure—the pump enclosure—houses the pumps for pumping sample air and digital inputs for inhibiting pump operation. Each pump enclosure contains four pumps, allowing one pump enclosure to sample gases from up to four different zones. If gases will be sampled from more than four zones, a second pump enclosure can be used, allowing for a maximum of eight zones to be analyzed by one MZA system.

Specifications

The MZA is designed and manufactured for the atmosphere heat treating industry; however, its uses go beyond the scope of these applications.

CO range:	0.00 to 30.00 %
CO ₂ range:	0.000 to 2.000 % (optional range 0-20.00%)
CH₄ range:	0.00 to 15.00 %
H ₂ range (with H ₂ sensor):	0.00 to 100%

* Note: These sensors have been optimized for use at the levels normally seen in an Endothermic atmosphere. The ranges can be adjusted to fit other applications. For information regarding modifications to the ranges shown above, please contact Super Systems.

Number of supported zones (maximum]:8
Sampling method:	Extraction by internal pump (when necessary)
Measurement Method (CO, CO ₂ , CH ₄):	Non-Dispersive Infrared (NDIR)
Measurement Method (H ₂):	Thermal Conductivity
Accuracy and repeatability:	\pm 1% of full scale
Recommended Calibration Interval:	Annual
AC Power Requirements:	110VAC (can be modified to 220V upon request)
Communications:	Ethernet, USB (Host), USB (Client), RS485 Modbus
Data Storage:	Continuous automatic data logging
Operating Temperature:	32° to 122° F (0° to 50° C)
External Dimensions:	Approx. 16"H X 20"L X 8"D per enclosure

Unpacking the Device

The following items should be included with the MZA: (1) MZA 6010 Gas Analyzer (4 - 8) Bowl Filter Assemblies (attach to "Sample Inlet" ports). Four bowl filter assemblies are attached to each pump enclosure; (1) ¼" Male NPT to 3/16" barb fitting (attach to "Aux. Cal. Gas Inlet" if desired) (1) Operations Manual (2) ¼" Male NPT to calibration gas inlet hose fitting (attach to "Zero and Span Cal. Gas Inlet" if desired)

If any of these items is missing or damaged, please contact Super Systems Inc. at 513-772-0060.

Mechanical Installation

Enclosure Mounting

It is recommended that the MZA 6010 enclosures be mounted as close to the sampling points as possible, since that will reduce the length of the plumbing lines that will need to be maintained. The MZA 6010 is intended for use in a heat treating environment, but care should be taken not to mount the enclosures too close to a furnace or other heat source. The operating temperature of the enclosures should be maintained below 122°F (50°C). If necessary, a heat shield can be mounted behind the enclosures to reduce the amount of radiant heat that the system is exposed to. In most cases, this will not be necessary.

The enclosures are heavily vented to prevent the buildup of potentially harmful gases in the unlikely event of an internal leak. This venting will also reduce the internal temperature by allowing the free flow of ambient air around the internal components.

Wiring Connections

Terminal blocks inside the instrument are available for the following purposes:

Interface/IR enclosure	Pump enclosure
Incoming line voltage	Incoming line voltage
 RS485 Communications to connect the Pump 	 RS485 Communications to connect the
Enclosure	Interface/IR Enclosure
RS485 Communications for external instruments	 Digital inputs for sample stop
(NOTE: Use Terminals 1561 and 1571 to wire	
external instruments to the MZA.)	
• 4-20mA Outputs	
Alarms	
Digital Inputs for COF/PF inhibit	

Each terminal block is numbered according to the included electrical drawing. Knockout holes in the enclosure have been provided to simplify wiring connections. Knockouts are located on the bottom of the enclosure. Additional or alternate locations can be added as needed. Please note that due to the potential for electrical interference, it is recommended that communication wires not be run in parallel to AC power wires.

The right side of the enclosure also contains two Ethernet ports, one USB A port (Host) and one USB B port (Client). These can be used to communicate to the MZA 6010. For detailed information on the use of these ports, please see the section of this manual, Communications and Source Setup. **Error! Reference source not found.** shows the wiring connections.

Plumbing Connections

Interface/IR enclosure	Pump enclosure
 Sample Inlet - The incoming gas from the pump enclosure. Sample Vent - After sampling, the gas will exit the enclosure through this port. Due to the potentially harmful nature of the gas being measured, the gas should be vented to a place in accordance with local regulations and safety standards. Zero and Span Calibration Gas Inlets - These are ¼" NPT female ports for connecting to calibration gases. For more information on acceptable calibration gases see the Sensor Calibration section of this manual. The incoming pressure of the gas will need to be adjusted to allow the flow to be the same for the calibration gas and the sample gas flow rate. The incoming pressurized gas goes through a small fixed orifice inside the analyzer, which should require between 20 and 50 psi to maintain proper flow. These ports are used with the automatic calibration system to provide calibrations at predetermined intervals or events. The use of these ports is not required for the operation of the MZA 6010. Auxiliary Calibration Gas Inlet - This ¼" NPT female port provides another entry point for both zero and span calibration gases. If calibrations are being performed manually, this port should be used for both gases. 	 (4) Sample Inlets (1) Outlet to Vent (1) Outlet to Analyzer

The flow of gas through the MZA 6010 is controlled by solenoid valves. Each valve is normally closed, and for safety purposes all valves will shut to prevent unwanted furnace gases from entering the instrument when power to the enclosure is lost or the specified sampling parameters are not met.

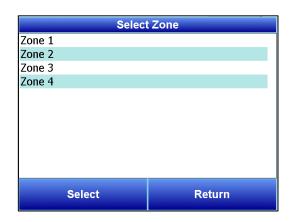
Appendix A: Plumbing Diagram shows the plumbing connections.

Basic Operating Description

The Model MZA 6010 has been designed for the simultaneous analysis of CO, CO_2 and CH_4 in heat-treat furnace atmosphere gases. It uses a color touch screen display / operator interface for data entry and for viewing. Selections can be made on the screen using a finger or a stylus. Avoid the use of sharp objects (pens, paperclips, screwdrivers, etc.) as they can cause permanent damage to the screen and void the warranty of the instrument.

After the power switch is turned on, it will take approximately 30 seconds for the MZA 6010 software to automatically load. Once the software is properly loaded, the instrument is ready to use. Power to any of the MZA enclosures can be turned off by tripping the circuit breaker inside the enclosure. Before the breaker is tripped in the interface/IR enclosure, select the "Shut down interface" option from the main menu and allow the screen to close the MZA software in a controlled manner. Doing so will help minimize any damage to data that could be done by an unexpected shutdown.

Hydrogen Cell Note:

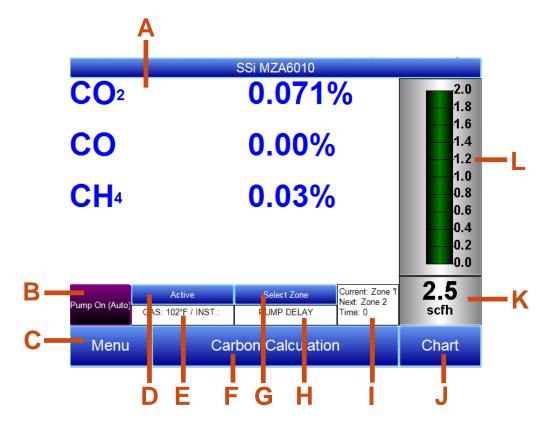

For highest H_2 accuracy, it is recommended that the system be powered on for 60 minutes before measurements are taken.

Zones

The MZA 6010 can analyze gas compositions from up to eight zones. The gases are circulated into the interface/IR enclosure by a pump in a pump enclosure. The gas composition is then analyzed by the IR sensor (and the H_2 sensor, if the MZA 6010 is equipped with one) before the gas is burned off.

A single zone is analyzed for a period of time known as the **dwell time**. The dwell time for each zone is configured by the user on the touch screen by using the Edit Active Zones option under the Zones Overview menu (described later in this manual). Zones can be enabled and disabled using the same option.

Because many options are associated with individual zones or must be configured at the zone level, several sub-menus on the MZA 6010 touch screen feature a Select Zone menu. The Select Zone menu allows you to select the zone for which you want to change specific settings. Examples of sub-menus that will bring up the Select Zone menu are Pump Mode Selection, Carbon Calculation, Automatic Sampling Parameters, Atmosphere/Temp Sources, Calculation Factors, Analog Output Setup (for board number), Gas Alarm Setup, SuperCalc, and Analog Input Calibration. These submenus are described in greater detail below.



Sub-menus that require zone selection will be identified in this manual by the Zone Selection icon shown at left.

Default Screen

Once the MZA 6010 has successfully loaded its software, the default screen will be displayed.

- A Measured values of CO, CO₂, CH₄, and IR %C (and H₂, if the H₂ sensor is present)
- B Pump status indicator / Button to change pump mode

NOTE: Option B requires zone selection.

- C Button to access menu list
- D Active / Inactive toggle to make the Current Zone active or inactive (requires login)
- E Temperature / Instrument Temperature indicator
- F Button for Carbon Calculation screen

G – Button to select which zone is currently displayed (if the button is tapped again, the default Zone view is displayed)

NOTE: Option G requires zone selection.

H – External Instrument Communications status indicator (NOTE: "PUMP DELAY" indicates the 2-second delay that occurs when the pump is placed in Automatic mode.)

I – Zone Status indicator: by default, this indicator shows which zone is active (Current), which zone is next to be analyzed (Next), and what the dwell time for the current zone is in seconds (Time)

- J Button for Trend Chart screen
- K Numeric Flow Indicator
- L Visual Flow Indicator

Pressing the **Return** button at the bottom right of the operator interface on any screen will take the display to the default. It may be necessary to press the **Return** button multiple times.

Pump Operation

NOTE: This function requires zone selection.

Initially, the pump will be off. The pump should remain off while sampling an endothermic generator or any other atmosphere under positive pressure. The pump should also remain off during calibration. For proper operation, the flow of gas through the sensors should be between 1.0 and 2.0 SCFH. If the flow meter on the right of the screen or on the inside of the lid does not indicate sufficient flow, turn the pump on. When accessed from the main screen, the pump has two possible modes: **Automatic** and **Off**. (NOTE: when the pump is placed in Automatic mode, there is a 2-second delay before the pump is activated. During this time, the External Instrument Communications status indicator will read "PUMP DELAY.")

Pump Control		
Pump mode O Automatic Off		
Calibrate flow meter	Return	

Carbon Calculation

NOTE: This option requires zone selection.

The MZA 6010 determines the percent carbon in the sample gas using measured amounts of CO, CO_2 , and CH_4 along with the Furnace Temperature. The Furnace Temperature is either entered by the user or obtained automatically from the Furnace Temperature Controller via RS-485 communications.

Additionally, the carbon percentage measured by the MZA 6010 can be used as a comparison to the carbon percentage measured by a furnace's oxygen probe. This is accomplished either by manually entering the Probe Temperature, Probe Millivolts, and the Probe CO Factor into the MZA 6010 or by obtaining the information automatically via RS-485 communications to the Furnace Carbon Controller. Providing the probe information allows the MZA 6010 to suggest an adjustment for the probe CO Factor (or Process Factor) in order to keep the oxygen probe measuring properly.

Carbon Calculation: Zone 1			
Furnace Temperature	1700 °F	Probe Tempera	^{ture} 1700 °F
Measured CO	0.00 %	Probe Millivolts	1100 mV
Measured CO2	0.000 %	%C (probe)	0.00 %
Measured CH4	0.00 %	Probe CO Facto	or 200
%C (gas analyzer)	0.01 %	Suggested CO Factor	4
[⊃] ump On (Auto) G	GAS: 94°F / INST.: 95°	°F	
		Chart	Return

Using infrared analysis is considered a more accurate method for determining the percent carbon of a gas compared to using an oxygen probe alone. The single point oxygen probe assumes a theoretical mixture of endothermic gas to infer the percent carbon whereas the gas analyzer will measure the exact composition of the process gas. The percent carbon determined by the gas analyzer can then be used to adjust the carbon percentage determined by the oxygen probe.

Chart

The Chart Display shows between 1 hour and 24 hours of process variable data on the screen and can be scrolled back to view all of the data stored on the flash card. The vertical timelines change as the time changes on the screen. The function buttons run along the bottom of the screen.

The Trend Lines button - Line - will allow the user to select or de-select the trend lines on the trend
chart to display. If the checkbox next to each trend line is checked, then that trend line will be displayed.
The Datagrid View button - will display a screen with the trend data in a grid format instead of with trend lines. The trend data is shown in 1-minute intervals. Clicking on the OK button on this screen
will close the screen <u>down</u> and return to the Chart Display screen.
3
The Refresh button - ———————————————————————————————————
The left-pointing green arrow button - 💴 - will move the chart's view backward in time by the
specified chart interval. The chart interval button - will determine the number of hours displayed on the trend chart. The
options are: 1 Hour, 2 Hours, 4 Hours, 8 <u>Hours,</u> 12 Hours , or 24 Hours .
The right-pointing green arrow button - will move the chart's view forward in time by the
specified chart interval.

Super Systems Inc.

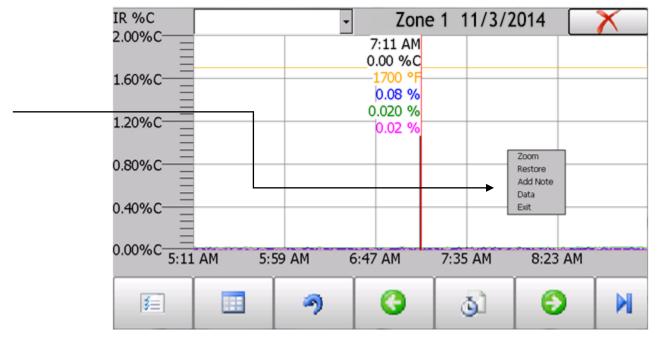

The right-pointing arrow with the vertical line next to it button - will toggle between viewing the chart in or out of real-time. When in real-time mode, the chart will automatically be updated once a minute.

Chart Sub Menu

NOTE: This option requires zone selection.

There is a sub-menu available by putting a finger or a stylus anywhere on the chart and holding it there for a couple of seconds. The sub-menu will have the following options available: **Zoom, Restore, Add Note, Data**, and **Exit**.

The **Zoom** option will allow the user to zoom in on a particular part of the screen. Once this has been selected, the user can take a stylus or a finger and create a box around the data. Once the user releases the stylus or finger, a zoom is no longer possible, and the user will need to re-select the option from the sub-menu to zoom in again.

The **Restore** option will back out of any zoom options that have been performed and display the initial chart screen.

The Add Note option allows the operator to enter a note on the chart, similar to writing on a paper chart. The note is available when the chart is printed out using the utility software included with the Series 9010 instrumentation. Pressing the Add Note option displays a screen where the operator can enter the operator ID or initials and a note. The user has the option to enter a note using either the operator interface keyboard and typing or using the Signature mode and writing the note with the stylus.

The **Data** option will show the trend data as a data grid instead of the trend lines on a chart. This

functionality is exactly the same as if the user pressed the Datagrid View button - **Land** - from the chart screen.

Exit will close out the sub-menu without selecting an item.

Pressing the red 'X' in the top right-hand corner of the screen will take the user back to the status screen.

Menu Lists

Accessing the menu screen will show available options.

11/3/2014 10:51:32 AM		· · ·
Zones Overview		
Zones Inhibited		
Carbon Calculation		
Instrument Information		
Shut down interface		
Login	Detail	Return

Zones Overview, Zones Inhibited, Carbon Calculation, Instrument Information, and Shut Down Interface can be accessed by any users. Additional menu items are available when an authorized user logs in using an appropriate Pass Code. When the Supervisor Pass Code is entered (default = 1), the user will also be able to access the Edit Active Zones and Zones Sequence Setup menus.

11/3/2014 10:53:30 AM		
Zones Overview		^
Edit Active Zones		
Zones Sequence Setup		
Zones Inhibited		
Carbon Calculation		
Sensor Calibration		
Automatic Sampling Pa	rameters	
Communications and S	ource Setup	
Instrument Setup		
Auto Calibration Setup		
Gas Alarm Setup		
Instrument Information		
Tools		
Login	Detail	Return

To see the full range of options available, the user must use the Configuration Pass Code (Default = 2). This provides the user with all available options including calibration and setup functions.

To access any items on the menu list, touch the item to highlight it and then press Detail. A specific description of each item on the list follows.

Zones Overview

The **Zones Overview** menu displays information on:

- Which zone is currently being analyzed (labeled **Current**);
- Which zone is next to be analyzed (Next, with a remaining dwell time shown); and

This menu also allows you to:

- Edit settings for active zones (Edit Active Zones) and
- View an overview screen on each active zone (View Detail on the currently selected zone). This will show the default screen for the selected zone.

Zones Overview				
	CO2	CO	CH4	
Zone 1 (Current)	0.000%	0.00%	0.00%	
Zone 2 (Next 24)	0.000%	0.00%	0.00%	
Zone 3	0.000%	0.00%	0.00%	
Zone 4	0.000%	0.00%	0.00%	
View Detail			Return	

Edit Active Zones

The Edit Active Zones menu allows you to:

- Change the status of each zone between Active and Inactive (Edit Status)
- Edit the dwell time, in seconds, for each zone (Edit Dwell Time) and
- Change the status of the pump for each zone between Auto and Off (Edit Pump).

Edit Active Zones			
Zone	Status	Dwell time(sec)	Pump
Zone 1	Active	90	Auto
Zone 2	Active	90	Auto
Zone 3	Active	90	Auto
Zone 4	Active	90	Auto
	Edit Status	Edit D	well Time
	Edit Pump	Re	eturn

Zones Sequence Setup

With Zones Sequence Setup, you can determine a sequence of zone analysis. Up to 32 items can be programmed in the sequence, and any active zone can be included in the sequence. The dwell time for each zone in the sequence is determined by the dwell time set in the Edit Active Zones menu. <u>Use of the Zones Sequence is optional</u>. If all entries are set to "Not Used", then the MZA will cycle through all active zones in numerical order.

Zone Sequence Setup			
Sequence	Zone		
1	Zone 2		
2	Zone 3		
3	Zone 1		
4	Zone 4		
5	Not Used		
6	Not Used		
7	Not Used		
8	Not Used		
9	Not Used		
10	Not Used		
11	Not Used		
12	Not Used		
13	Not Used		
14	Not Used		
15	Not Used		
16	Not Used		
17	Not Used		
18	Not Used		
19	Not Used		
20	Not Used		
Set	Clear	Return	

The **Set** button allows you to select which zone is applied to the selected step number (1 through 28). The **Clear** button will clear any zone from the selected step.

To illustrate how this works, assume an example where Zones 1, 2, 3, and 4 are active. You can determine multiple sequences including those zones. In the example below, three example sequences are shown. Each sequence has eight steps. In Sequence 1, Zones 1, 2, 3, and 4 are analyzed in order, followed by Zone 3, 2, 4, and 1. This sequence will repeat itself after Step 8. In Sequence 2, Zones 3 and 4 are analyzed, one after the other, three times. In Steps 7 and 8, Zones 1 and 2 are analyzed, respectively. Finally, in Sequence 3, the zones are analyzed in an inverted order (4, 3, 2, 1) in the first four steps, and then they are analyzed in standard numerical order (1, 2, 3, 4) in Steps 5 through 8.

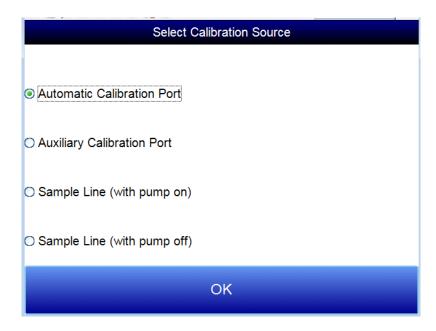
E	Examples of Possible Sequences in a Four-Zone Setup			
Step Number	Sequence 1	Sequence 2	Sequence 3	
1	Zone 1	Zone 3	Zone 4	
2	Zone 2	Zone 4	Zone 3	
3	Zone 3	Zone 3	Zone 2	
4	Zone 4	Zone 4	Zone 1	
5	Zone 3	Zone 3	Zone 1	
6	Zone 2	Zone 4	Zone 2	
7	Zone 4	Zone 1	Zone 3	
8	Zone 1	Zone 2	Zone 4	

Zones Inhibited

This menu contains information on which zones are inhibited and which zones are not inhibited. If a zone is inhibited, the screen will indicate a reason for the inhibiting of that zone. No settings can be changed. This is an informational screen.

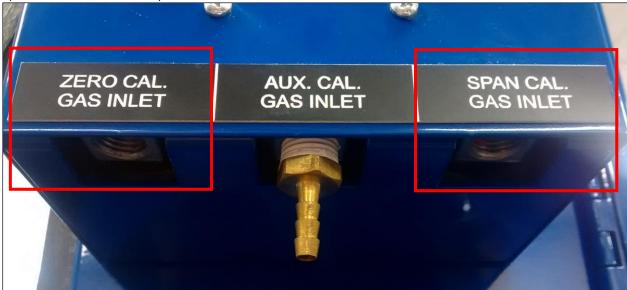
Zones Inhibited		
Zone 1	Not Inhibited (setup)	
Zone 2	Not Inhibited (setup)	
Zone 3	Not Inhibited	
Zone 4	Not Inhibited (setup)	
Zone 5	Zone not active	
Zone 6	Zone not active	
Zone 7	Zone not active	
Zone 8	Zone not active	
	Return	

Reasons for a zone being inhibited include the following:


- Pump off
- Digital input blocking sample
- Zone off
- Minimum TC not satisfied
- Minimum mV not satisfied
- Calibration active
- Autocal active
- Sample inhibited
- Zone off or adjust delayed
- Digital input blocking adjustment

Carbon Calculation

Please see the Carbon Calculation section starting on page 10.


Sensor Calibration

On the MZA 6010, you can perform a sensor calibration with one of four calibration sources. These sources are displayed when **Sensor Calibration** is first selected: **Automatic Calibration Port**, **Auxiliary Calibration Port**, **Sample Line (with pump on)**, and **Sample Line (with pump off)**.

You will be required to select one of the four sources.

With the **Automatic Calibration Port**, calibration is performed using the Zero Calibration Gas Inlet and Span Calibration Gas Inlet ports on the side of the enclosure.

Gas Inlet Ports for Automatic Calibration

The **Auxiliary Calibration Port** makes use of the Auxiliary Calibration Gas Inlet, located on the side of the enclosure and in the middle of the gas inlets for Zero Calibration and Span Calibration. A single gas line is run to the Auxiliary Calibration Gas Inlet port for zero <u>and</u> span calibration.

Gas Inlet Port for Auxiliary Calibration

Calibration with a **Sample Line** makes use of the Sample Inlet Port located on the side of the enclosure opposite the ports used for Automatic Calibration and Auxiliary Calibration. The option selected will depend on whether the pump is running [Sample Line (with pump on)] or not running [Sample Line (with pump off)].

Sample Inlet Port Used for Sample Line Calibration

Once you have attached the gas line as needed and selected the desired calibration source, tap OK. A screen similar to the one shown below will be displayed.

Sensor Calibration					
Zero Calibi	Zero Calibration O Span Calibration				
Gas	Target	Actual	Status	1.8	
 ⊂ CO	0.00%	-0.02%	ОК	——1.6 ——1.3	
✓ CO2	0.000%	0.050%	OK	1.1	
CH4	0.00%	0.07%	ОК	0.9 0.7	
		-		0.4	
Last Zero Calil	Last Zero Calibration: 6/16/2014 (12 days, 12 minutes)			0.2	
Last Span Cali	Last Span Calibration: 6/16/2014 (12 days, 6 minutes)			0.0	
Pump should be off when using pressurized cylinders of gas scfh					
Ent	Enter Cal Mode Return				

Two types of calibrations can be performed on the NDIR sensor: Zero and Span. The Zero calibration should be performed with a gas that has none of the measured gases in it. Ideally this would be pure Nitrogen or Argon. The concentration of the Span calibration gas should closely resemble the gas that is being measured. For a heat treating application measuring endothermic gas, the ideal composition would be:

- CO: 20%
- CO₂: 0.5%
- CH₄: 5.0%
- H₂: 40%
- N₂: Balance

Since the accuracy of the calibration gas directly influences the resulting accuracy of the instrument, the highest possible accuracy grade should be obtained. Some gas suppliers refer to this as a "Certified Primary Standard". The high degree of accuracy is not required to obtain nominal values that exactly match the values shown above. The accuracy is required to know the exact composition of the gas in the cylinder. The actual composition will be shown on the bottle when it is delivered.

When flowing calibration gas is into the analyzer, turn the pump off. The amount of flow from the gas cylinder should be approximately 1.5 SCFH at no pressure. The gas cylinders will be under high pressure, so it is recommended that a two stage regulator with a low pressure secondary stage be used. It is good practice to begin the flow of gas before attaching the calibration gas to the instrument. This will prevent any high pressure bursts from entering the instrument.

Calibration gases can be obtained from Super Systems, however they can also be obtained from any supplier of custom gases.

Hydrogen Cell Note:

It is recommended that the instrument be turned on for three hours prior to performing an H₂ calibration.

Performing a Zero Calibration

From the Sensor Calibration screen, be sure that the button at the upper left of the instrument is selecting **Zero Calibration** and not **Span Calibration**.

When this is selected, the target values will automatically go to zero. Begin the flow of gas at the appropriate rate, and allow the readings to come to equilibrium. This occurs when the actual values are not moving in a specific direction, and they display only slight movements up and down. This should take approximately 45 seconds.

There is a column showing the Status of each gas. In this area the instrument is making a comparison between the Target value and the Actual value and providing feedback based on the amount of difference between the two. There are three possible words that can appear in this area:

"**OK**" – The gas is within 10% of where it is expected to be.

"**OK?**" – The gas is between 10% and 20% of where it is expected to be. This could indicate an issue with the calibration gas, so the calibration gas and the associated tubing should be checked and verified to be free from leaks or improper gas composition. This message does not necessarily indicate that there is a problem with the sensor or the calibration. It is meant only to have the operator make sure that the proper procedures are being followed.

"BAD" – The gas is more than 20% from where it is expected to be. The same items should be checked as described above. This message could indicate an issue with the sensor.

Regardless of the status of each of the gases, the instrument can be calibrated by waiting for the readings to stabilize and pressing **Start Calibration**. Timers will begin to count down, and when they reach zero the Actual values should be the same as the Target values (allowing for slight variations as a result of gas fluctuations).

Performing a Span Calibration

A Span calibration is performed the similarly to the zero calibration but with two small changes. First, the selector button at the top should be on **Span Calibration** instead of **Zero Calibration**. Second, the gas values for the specific cylinder of gas being used need to be entered into the Target values. To do this, press the blue box associated with each gas and enter the value shown on the cylinder. For example, the nominal value for CO may be 20%, but your cylinder may actually have 19.96% CO. 19.96 is the value that should be entered as a Target.

After the gas values have been entered, proceed with the calibration in the same manner as with the zero calibration. Never perform a span calibration without first doing a zero calibration.

Automatic Sampling Parameters

NOTE: This option requires zone selection.

This instrument is capable of communicating directly with a control instrument. This is valuable because it will provide real-time entry of the temperature and millivolt information from the probe, allowing for an accurate comparison between the IR % Carbon and the Probe %Carbon. To establish this communications link, see "Communications and Source Setup – Atmosphere/ Temp Sources."

The Automatic Sampling Parameters screen will allow the user to adjust the way that the MZA 6010 updates the COF / PF in the atmosphere controller. All of the parameters on this page can be disregarded if the "COF/PF Adjustment Mode" is set to Monitor mode. These parameters only apply when the instrument is in Control mode.

Automatic Sampling Parameters		
COF/PF Adjustment Increment	1	
COF/PF Adjustment Interval (minute	es) 1	
Minimum COF/PF Value	130	
Maximum COF/PF Value	220	
COF/PF Adjustment Mode	Monitor	
Minimum Temperature for sampling	1490°F	
Minimum Millivolts for sampling	1030 mV	
Minimum Millivolt condition	also stops pump	
Edit	Return	

COF/PF Adjustment Increment

When adjustments are made automatically, this value indicates the size of the step that is made when the COF/PF is changed. It is recommended that this number remain low to avoid making sudden changes to the process that could be caused by temporary conditions.

COF/PF Adjustment Interval (minutes)

This indicates the frequency that automatic adjustments are made. We recommend making small changes at a frequent interval instead of making large changes at longer intervals. This will prevent temporary changes in atmosphere from making dramatic adjustments to the COF/PF.

Minimum COF / PF Value

As a safeguard, the COF/PF can be prevented from dropping below a certain point. This point is the Minimum COF/PF value.

Maximum COF / PF Value

The Maximum COF/PF can also be entered as a safeguard.

COF / PF Adjustment Mode

This selection determines if changes to the COF/PF will be made automatically or if the instrument will monitor the conditions without making any changes. When in **Monitor** mode, a COF/PF will continue to be suggested, but no modifications will be made to the atmosphere controller.

Minimum Temperature for sampling (0 = disabled)

This value is the lowest temperature that the instrument will sample from. When the temperature drops below this value, the COF/PF adjustment will stop and the sample pump will turn off *only if the pump is*

Super Systems Inc.

set to "Auto" mode. To use this feature, the instrument should be communicating with an instrument that can provide real-time temperature data. The purpose of this function is to prevent the instrument from pulling a bad sample, which could potentially damage the sensors. The minimum temperature should always be slightly higher than the lowest possible process temperature.

Minimum Millivolts for sampling (0 = disabled)

This value is the lowest number of millivolts at which sampling will take place. When the number of millivolts drops below this value, the COF/PF adjustment will stop; the sample pump will turn off *only if the pump is set to "Auto" mode* and the Minimum Millivolt Condition is set to "Also stops pump" (see below). To use this feature, the instrument should be communicating with an instrument that can provide real-time probe millivolt data. The purpose of this function is to prevent the instrument from pulling a bad sample, which could potentially damage the sensors. This will prevent adjustments from being made when the proper conditions are not met. The minimum millivolts set point should be slightly higher than the minimum millivoltage that is expected.

Minimum Millivolt condition (0 = disabled)

This determines the behavior of the MZA 6010 when the minimum millivolts value is reached. Two settings are available:

- Also stops pump. When this setting is selected, the sample pump will be stopped *if the pump is set to "Auto" mode*, and COF/PF adjustment will be stopped.
- **Only inhibits adjust and control.** When this setting is selected, COF/PF adjustment will be stopped, and the sample pump will be allowed to run.

To use this feature, the instrument should be communicating with an instrument that can provide realtime probe millivolt data. This is another feature that is intended to prevent the analyzer from pulling a bad sample and potentially damaging the sensors.

Communications and Source Setup

This screen allows the user to view and modify the method of communications between the instrument and external devices.

Communications and Source Setup				
IP Address				
Atmosphere/Temp Source	es			
Port Setup				
	Detail	Return		

IP Address

This screen allows you to:

- View the current IP address of the touch screen (To change the IP address to a fixed address, see the Manually Setting the IP Address section below)
- View or change the IR cell IP address
- View or change the IR cell net mask
- View or change the IR cell IP gateway

The Touch Screen IP Address is set dynamically by default. For the IR Cell, its IP Address, Net Mask, and IP Gateway are set to defaults, as follows:

- IR Cell IP Address: 192.168.0.221
- IR Cell Net Mask: 255.255.248.0
- IR Cell IP Gateway: 192.168.1.101

Using the IP Address menu options, these default values can be changed.

Communications and S	ource Setup-IP Address
Touch screen IP Address	192.168.1.111
IR Cell IP Address	192.168.1.29
IR Cell Net Mask	255.255.255.0
IR Cell IP Gateway	192.168.1.101
<	2
Edit	Return

The IR Cell IP Address option allows you to view the current IP address of the IR cell. To change the IP address of the IR cell, tap on the option line and select **Edit**.

The IR Cell Net Mask option allows you to view the current Net Mask of the IR cell. To change the Net Mask of the IR cell, tap on the option line and select **Edit**.

The IR Cell Gateway option allows you to view the current Gateway of the IR cell. To change the Gateway of the IR cell, tap on the option line and select **Edit**.

In order to detect the IR cell on the network when it is connected via Ethernet, it must be on the same subnet as the device (for example, the computer).

Manually Setting the IP Address

When connected to a network, the MZA 6010 screen will obtain its own IP Address. It does this during the power-up procedure, so if communication via Ethernet is preferred, plug the cable into the instrument before turning it on. To use a specific IP address, it must be entered on the Windows CE screen. This can only be accessed when the Gas Analyzer software has been shut down.

- 1. Log in to the MZA 6010 touch screen using the supervisor access code (by default, this code is '2').
- 2. Access the Instrument Setup \rightarrow General Setup menu.
- 3. Select "Shut Down Software" followed by "Yes".
- 4. The program will shut down and a Windows CE screen will appear.
- 5. Click the Start menu in the lower left corner.
- 6. Select 'Settings" and then "Network and Dial-up Connections".
- 7. Select "CS89001"
- 8. Select the option for "Specify an IP Address"
- 9. Enter the desired IP Address, Subnet Mask, and Default Gateway.

- 10. Select "OK"
- 11. Close open windows to return to the main Windows CE Screen.
- 12. Double-click on the "SaveRegs" icon.
- 13. Select "OK" from the Registry Save Complete notification.
- 14. Turn the instrument off and wait for the screen to turn off.
- 15. Turn the instrument back on.
- 16. The instrument will automatically boot up as a gas analyzer with the IP address that has been manually entered.

Atmosphere/Temp Sources

NOTE: This option requires zone selection.

RS485 communications can be set up to automatically enter and update data from the oxygen probe and, if desired, make modifications to the COF/PF in the atmosphere controller.

NOTE: Use Terminals 1561 and 1571 on the main enclosure to wire external instruments to the MZA.

Atm/Temp sources: Zone 1			
Port Usage	Modbus Master		
Port Baud Rate	19200		
Probe Temp/mV Instru	SSI AC20		
Probe Temp/mV Instru	0		
Status	Not configured		
Furnace Temp Instrum	SSI 7EK		
Furnace Temp Instrum	0		
Status	Not configured		
Edit	Return		

Port Usage

This is the communication method used to supply information to the instrument. The possible values are: Modbus Master Modbus Host

Modbus Host

Port Baud Rate

This is the speed of communications which can range between 1200 and 115200.

Probe Temp/mV Instrument

This is the make and model of the device that will be supplying the instrument with information on: probe temperature, probe millivolts, and COF/PF. Possible choices are:

- Internal, Probe mV, K
- Internal, Probe mV, S
- SSi AC20
- Yokogawa 750
- Honeywell UDC3300
- Dualpro 1 Mod
- Dualpro 2 Mod
- DP 1 MMI
- DP 2 MMI

- Eur 2404
- Eur 2500
- CP V3.5
- CP V3.0
- CarbPC
- SSi 9200 loop 1
- IR Base
- MGA
- 9010

Probe Temp/mV Instrument Address

This is the address of the atmosphere controller. It can be directly entered using the numeric keypad on the touch screen.

Furnace Temp Instrument

This is the make and model of the device that will be supplying the instrument with information on furnace temperature. If there is no instrument associated with this input, the probe temperature will be used. Possible selections are:

Internal, S	VC Base 3
Internal, K	VC Base 4
SSi 7EK/804/808/816	AIPC
Yokogawa 750	SSi 7SL
Honeywell UDC 3300	Flow Meter
Dualpro 1 Mod	UMC800
Dualpro 2 Mod	SSi DO0
DP 1 MMI	SSi D01
DP 2 MMI	SSi DO2
Eur 2404	SSi D03
Eur 2500	Yokogawa UT350
UP V3.5	Yokogawa 750 loop 2
UP V3.0	Yokogawa UP350
CP3.5 SL	DCP551
CP3.0 SL	Ascon 08
10Pro	Ascon X5
DP IN C	Ascon M4L
SSi 9200 loop 1	Ascon X5 Timer
SSi 9200 loop 2	SPUD
SSi 9200 loop 3	SSi AIB 3
SSi 9100 loop 2	Hydrogen
Eurotherm 2704 loop 1	Flow
Eurotherm 2704 loop 2	02 remote
Eurotherm 2704 loop 3	Dual monitor
VC Base 1	Wflow
VC Base 2	9010

Furnace Temp Instrument Address

This is the address of the furnace temperature instrument. It can be directly entered using the numeric keypad on the touch screen.

<u>Port Setup</u>

This page is used to set the parameters for the communications ports. The factory default settings are shown below, and they should not need to be changed by the operator.

Communications Setup-Port Setup		
Host Address	1	
RS232 Port A Baud Rate	19200	
RS232 Port A Mode	Modbus Master	
RS485 Port C Baud Rate	19200	
RS485 Port C Mode	Modbus	
RS485 Port D Baud Rate	19200	
RS485 Port D Mode	Modbus Master	
Edit	Return	

Instrument Setup

The items shown in this menu list are settings that should only need to be changed once. Any modifications to the default values will be saved in the instrument.

lns	strument Setu	ab
Calculation Factors		
IR Matrix Tables		
General Setup		
Security Settings		
Analog Output Setup		
Factory Default Settings	;	
Other Settings		
Language Setup		
	Detail	Return

Calculation Factors

NOTE: This option requires zone selection.

Calculation Fa	ctors: Zone 3	
IR Factor	CO Factor	
IR Shim Factor	160	
CH4 Factor	20	
Select IR Matrix	Disable	
Set Setpoints based on IR Factor		
Furnace Temperature Set	Point IR Temperature	
Edit	Return	
	Ketuini	

In this menu, there are two factors that will influence the calculation of carbon: **IR Shim Factor** and **CH**₄ **Factor**. Each of these factors is incorporated in the equation used to calculate %C; they are described in further detail below. The calculation factors should be changed only after determining that additional adjustments are required based on the specific conditions and equipment at each facility. Neither of them should be modified without significant testing or consultation from Super Systems, Inc.

IR Factor

This setting determines which of two parameters is incorporated in the %C calculation: **CO Factor** or **Process Factor (PF)**.

IR Shim Factor

Changing the IR Shim Factor is a way of modifying the computed percent carbon. The nominal value is 180. There is an inverse relationship between the IR Shim Factor and computed percent carbon. To increase the computed percent carbon, this number should be lowered, and to decrease the computed percent carbon it should be increased.

CH₄ Factor

This factor increases or decreases the significance of CH_4 in the calculation of carbon. CH_4 does not have a significant impact on the computed percent carbon, so it has a minor role in the equation. If the measured gas has over 5% CH_4 , its role in the equation may become greater than it should be. In these cases the CH_4 factor should be reduced. In cases where the CH_4 is present in excess of 7 or 8%, this factor can be reduced to zero.

Select IR Matrix

This option allows you to choose a user-configured IR Matrix, or an external value or Matrix (written by an external source, such as a PLC).

Disable		<u>^</u>
Matrix Table 1		
Matrix Table 2		
Matrix Table 3		
Matrix Table 4		
Matrix Table 5		
Matrix Table 6		
Matrix Table 7		_
Matrix Table 8		
External		
External Table 1		
External Table 2		~
	OK	Cancel

Tap the desired source and then tap "OK" to select. Tap "Disable" to disable this feature.

Set Setpoints based on IR Factor

The MZA 6010 has the ability to automatically adjust temperature and atmosphere setpoint in an effort to get the Process Variables (PVs) for temperature and atmosphere within a selected range set in the IRF Matrix. This option allows you to select an IRF Matrix range set based on which the MZA 6010 will make adjustments to temperature and atmosphere setpoints. Of course, if the IRF Matrix is configured so that only temperature is used in determining changes to the IR Shim Factor, only temperature will be displayed in the menu for **Set Setpoints based on IR Factor**, and only the temperature setpoint will be adjusted by the MZA 6010 when this option is used. <u>Note that **Use IRF Matrix** and **Use Furnace Temp for Furnace Setpoint** must both be set to "IR Temperature" for this option to work. In addition, the MGA 6010 must not be configured to communicate with slave instruments; see the **IMPORTANT!** box below.</u>

IRF Adjustment Matrix			
IRF (Atm < 0.25, Temp < 1200)	95		
IRF (Atm < 0.25, 1200 <= Temp	o < 1400) 105		
IRF (Atm < 0.25, 1400 <= Temp	< 1600) 115		
IRF (Atm < 0.25, 1600 <= Temp) 125			
IRF (0.25 <= Atm < 0.4, Temp < 1200) 135			
IRF (0.25 <= Atm < 0.4, 1200 <	= Temp < 1400)	125	
IRF (0.25 <= Atm < 0.4, 1400 <	= Temp < 1600)	125	
IRF (0.25 <= Atm < 0.4, 1600 <= Temp) 125			
IRF (0.4 <= Atm < 0.6, Temp < 1200) 105			
IRF (0.4 <= Atm < 0.6, 1200 <= Temp < 1400) 95			
IDE (0.4 ~ = Atm < 0.6 1400 ~ =	- Tomp < 1600	05	•
Select Input	Retur	n	

An example of how this option is used can be given as follows. Assume that, in the IRF Matrix, one of the range sets is $(0.25 \le Atm \le 0.4, Temp \le 1200)$ with a corresponding IR Shim Factor of 135. Because this range set is set up in the IRF Matrix, it will appear as an option in the **Set Setpoints based on IR Factor** selection list. To apply this range set to the atmosphere and temperature setpoints, the user first taps on the **IRF (0.25 <= Atm < 0.4, Temp < 1200)** 135 line in the menu list until that option is highlighted. Next, the user taps on the **Select Input** button to apply that option.

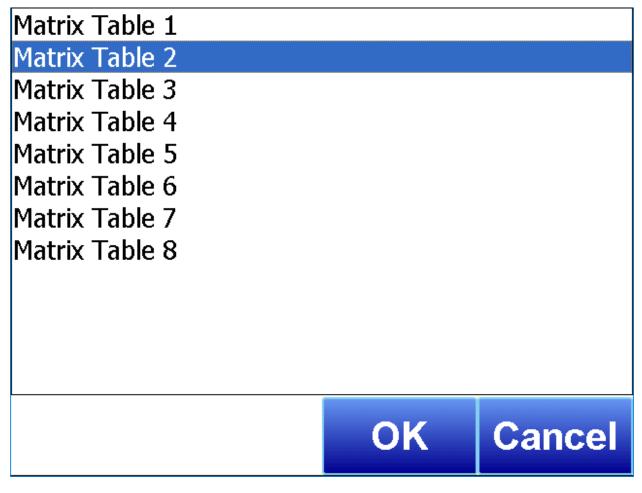
Once the range set is selected and applied, the MZA 6010 will automatically change the temperature setpoint and (if applicable) atmosphere setpoint. In the **Carbon Calculation** screen, the **Temperature Setpoint** and **Carbon Setpoint** will <u>not</u> be visible or editable while control is based on IR Factor.

IMPORTANT!

This option will work <u>only</u> when the MZA 6010 is not communicating with any slave instruments. If you attempt to use this option by tapping it and then tapping "Edit" when the MZA 6010 is communicating with a slave instrument, the message "Cannot use this feature with Slave Instrument configured" will be displayed. To disable slave instruments, open the Communications and Source Setup \rightarrow Atmosphere/Temp Sources menu; then set both the **Probe Temp/mV Instrument Address** and **Furnace Temp Instrument Address** to "0".

Communications and Source Setup-Atmosphere/Temp Sources		
Port Usage	Modbus Ma	ster
Port Baud Rate	19200	
Prohe Temp/mV Instrument	SST AC20	
Probe Temp/mV Instrument Address	0	
Status	Not configu	red
Eurnace Temp Instrument	SSI 7EK	
Furnace Temp Instrument Address	0	
Status	Not configu	red
Edit		Return
Euit		Ketum

Furnace Temperatire Set Point Source


This option allows you to choose the Probe Temperature or IR temperature as the set point source. Tap the desired option and then tap "OK" to select.

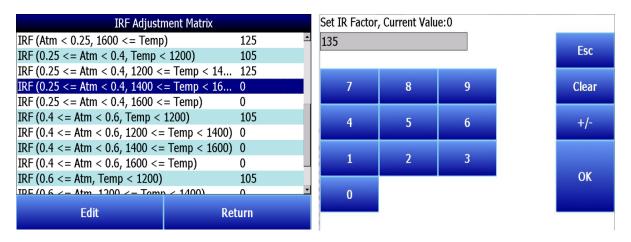
Furnace Temperature Set Point Sou	irce, Current Value:
⊖ Probe Temperature	
IR Temperature	
ОК	Cancel

IR Matrix Tables

The IRF Adjustment Matrix, sometimes referred to simply as the IRF Matrix, is used to set conditions under which the IR Shim Factor will be changed. **NOTE:** Once an IR Matrix is set up, it must be selected under the "Calculation Factors" menu for the desired zone in order to become active.

Select a Matrix Table number edit and tap "OK"

The following steps describe how to configure the IRF Matrix.


- 1. To begin, decide whether both atmosphere and temperature should be considered in setting the IR Shim Factor, or only temperature.
 - If both atmosphere and temperature apply, set **Temp Only** to "No" (and then go to step 2 below).
 - If only temperature applies, set **Temp Only** to "Yes" (and then go to step 3 below).
- 2. Configure up to 3 atmosphere limits. Each atmosphere limit marks a boundary line within the matrix. Atmosphere values above and below each limit will be evaluated in determining the IR Shim Factor.

For example, if the atmosphere limits are 0.25, 0.4, and 0.6, the following ranges will be evaluated in helping to determine the IR Shim Factor:

- Less than 0.25 (Atm < 0.25)
- 0.25 0.39 (0.25 <= Atm < 0.4)
- 0.4 0.59 (0.4 <= Atm < 0.6)
- 0.6 and higher (0.6 <= Atm)
- 3. Configure up to 3 temperature limits. Each temperature limit marks a boundary line within the matrix. Temperature values above and below each limit will be evaluated in determining the IR Shim Factor.

For example, if the temperature limits are 1200, 1400, and 1600, the following ranges will be evaluated in helping to determine the IR Shim Factor:

- Less than 1200 (Temp < 1200)
- 1200 1399 (1200 <= Temp < 1400)
- 1400 1599 (1400 <= Temp < 1600)
- 1600 and higher (1600 <= Temp)
- 4. Now, enter an IR Shim Factor for each set of ranges. Do this by tapping on a set of ranges and then tapping "Edit". A numeric entry screen will appear, allowing you to enter a value for the IR Shim Factor.

Once IR Shim Factor values have been entered for each set of ranges, the IRF Matrix is configured. The IRF Shim Factor will be set to the configured value for a set of ranges when the atmosphere and temperature (or temperature only, if configured that way) are within those respective ranges. For example, if the atmosphere is 0.3% and the temperature is 1230°, and the IRF for range set (0.25 <= Atm < 0.4, 1200 <= Temp < 1400) is 125, the MGA 6010 will set the current IR Shim Factor to 125.

Click **Return** to return to the Calculation Factors screen.

General Setup

This screen shows the current time and date for the instrument, as well as the temperature scale. The temperature mode can be changed from this screen, but the time cannot be changed unless the MZA software is closed. This can be done through the following steps:

Manually Setting the Time, Date, and Time Zone

- 1. Log in to the PGA 3510 touch screen using the supervisor access code (by default, this code is '2').
- 2. Access the Instrument Setup \rightarrow General Setup menu.
- 3. Select "Shut Down Software" followed by "Yes".
- 4. The program will shut down and a Windows CE screen will appear.
- 5. Click the time in the lower right corner (press the stylus in this corner if the time does not automatically appear).
- 6. Set the time, date, and time zone to the desired settings
- 7. Select "OK"
- 8. Double-click on the "SaveRegs" icon.
- 9. Select "OK" from the Registry Save Complete notification.
- 10. Turn the instrument off and wait for the screen to turn off.
- 11. Turn the instrument back on.
- 12. The instrument will automatically boot up as a gas analyzer with the IP address that has been manually entered.

NOTE: If touch screen is recording data with date and time information that is "shifted" from that displayed in the external datalogging software (e.g., readings at 9am are displayed as 11am), then the time zone and daylight savings settings *on the external computer* may need to be adjusted, in addition to performing the procedure above.

Security Settings

This page is used to change the pass code used for logging into the menu list. The default setting for the Supervisor Pass Code is 1, and the default setting for Configuration is 2. The maximum value for either code is 32767.

The Configuration Code will also work for all items on the Supervisor Pass Code items, so entering the Configuration Code (default =2) will provide access to all available menus.

Analog Output Setup

NOTE: This option requires **board** selection.

The MZA 6010 has four analog outputs per zone. These outputs can be configured for variable, zone number, Milliamps, zero value, and span value.

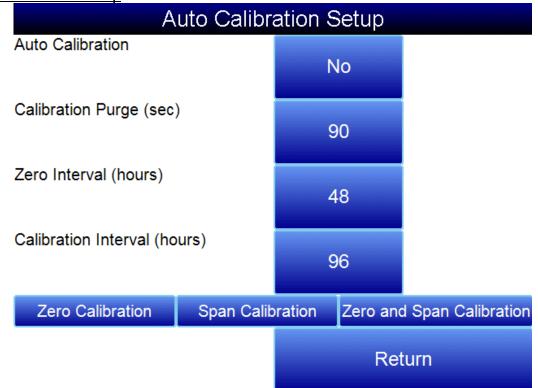
- The Variable is the process variable that applies to that analog output. Possible values are CO, CO₂, CH₄, High CO₂, IR % carbon, H₂, O₂, and Probe %C.
- The **Zone Number** is the zone number to which each analog output applies.
- MA represents the Milliamp range used for each analog output signal. Options are 4-20mA and 0-20mA.
- The **Zero Value** is the value that corresponds to the lowest value on the Milliamp scale.
- The **Span Value** is the value that corresponds to the highest value on the Milliamp scale.

Analog Output	Setup: Board1
Analog Output 1 Zone Nun	nber 1 🏻 🖆
Analog Output 1 MA	4 - 20MA
Analog Output 1 Zero Valu	e 0.00
Analog Output 1 Span Valu	ie 30.00
Analog Output 2 Variable	CO2
Analog Output 2 Zone Nun	nber 1 🚽
Analog Output 2 MA	4 - 20MA
Analog Output 2 Zero Valu	e 0.00
Analog Output 2 Span Valu	ie 300.00
Analog Output 3 Variable	CH4
Analog Output 3 Zono Number 1	
Edit	Return

Factory Default Settings

Selecting this option will cause the instrument to revert back to the settings that it contained when it came from Super Systems. Any changes or modifications made since then will be lost.

Other Settings


NOTE: This option requires zone selection for enabling dew point calculation in particular zones.

This screen determines whether dew point calculations are enabled. This value is not normally displayed because it is only accurate during certain conditions. Calculating dew point by using the gas values requires assumptions to be made regarding the composition of the gas being sampled. Since these assumptions are not always accurate, the resulting dew point is not always accurate. When using endothermic gas in a heat treating environment, the calculated dew point will usually be close to the correct value, but there is no substitute for a dew point that is determined through direct measurement of the moisture content of the gas.

When the dew point is enabled, it will appear near the bottom left of the Carbon Calculation screen.

Language Setup

The instrument language should be pre-configured at Super Systems prior to shipment but can also be changed by making a selection from the drop-down list. For the language change to take effect, the instrument must be powered off and then back on again.

Auto Calibration Setup

The automatic calibration feature allows the instrument to calibrate itself using external supplies of zero and span calibration gases at pre-determined intervals or events as dictated by the user. The first step when setting up the automatic calibration feature on the MZA 6010 is to connect the Zero and Span calibration gases to the appropriate ports on the left side of the enclosure. There are blocking solenoids at each of these ports to only allow the flow of gas when it is called for and to prevent the flow when not needed. The pressure in the gas lines will need to be adjusted to maintain a flow rate similar to the sample flow rate, which should be between 20 and 50psi.

Method #1: Automatic calibrations based on timed intervals

The interval between calibrations is determined on the Auto Calibration Setup screen. Auto Calibration must be set to "On". The calibration purge timer allows for the flow of calibration gas to purge the sample gas from the instrument before performing a calibration. If the sample lines are long the time can be increased from the default value of 90 seconds.

The zero and span intervals are measured in hours. The appropriate interval can be based on the process and the desired degree of accuracy. The standard values are 48 hours for a zero calibration and 96 hours for a span calibration.

Method #2: Automatic calibration based on digital inputs

It is also possible to initiate calibrations externally. This method may be beneficial if the calibration is to be tied in with a process event or as directed by a PLC. Connecting Terminals 2351 and the adjacent GND terminal will initiate an automatic Zero calibration. Connecting Terminals 2331 and the adjacent GND terminal will initiate an automatic Span calibration. Calibration can be initiated using the digital inputs regardless of the timed interval calibration setup. There are no setups required for the digital inputs since they are not user-configurable.

The three buttons at the bottom of the screen (Zero Calibration, Span Calibration, Zero and Span Calibration), can be used to initiate immediate calibrations from the Auto Calibration Setup screen. These buttons will not work unless the automatic calibration feature has been enabled.

Gas Alarm Setup

NOTE: This option requires zone selection.

Gas Alarm Setup: Zone 1			
Parameter	Lower Limit	Upper Limit	Action
со	0	100	None
CO2	0	1	None
CH4	0	100	None
High CO2	0	100	None
IR %C	0	100	None
H2	0	100	None
02	0	1000	None
Furnace TC	0	10000	None
Probe TC	0	10000	None
Dueles MU	^	10000	NI
Edit LL	Edit UL	Edit Action	Return

The MZA 6010 allows the user to configure various alarms. For each parameter, there is a Lower Limit, Upper Limit, and Action. As default, no alarms are enabled on the MZA unless a special request was made to do so at the time of ordering. To modify a parameter's properties, select the item and press Edit with the appropriate option. When any parameter is in an alarm state, a notification banner will show at the top of the screen identifying the alarm, and the red light on the door will illuminate. If desired, one of the two relays (or both simultaneously) can be energized.

Edit LL is used to edit the lower limit for a selected parameter. **Edit UL** is used to edit the upper limit for a selected parameter. **Edit Action** is used to edit the action for a selected parameter.

There are four possible actions for the alarms:

- None On screen notification of alarm condition. No relay actions.
- A1 On screen notification of alarm condition plus energizing of alarm relay #1.
- A2 On screen notification of alarm condition plus energizing of alarm relay #2.
- A1AndA2 On screen notification of alarm condition plus energizing of alarm relays #1 and #2.

The relays provide a contact that can be connected to external lights, horns, or other devices as desired. The rating for these relay contacts is maximum of 6 Amps / 250 Volts.

Instrument Information

These items cannot be modified; they can only be viewed.

General Information

This is information on the revision levels of various components of the instrument. This can be valuable when consulting with Super Systems about issues with the instrument.

Calibration Dates

This area describes the last time the instrument was calibrated at Super Systems, plus any calibrations that have been performed since then. These dates and times are automatically computed and cannot be manually entered.

<u>Tools</u>

То	ols	
Pressure Sensor Calibration		
Thermistor Calibration		
SuperCalc		
Set User Cal		
Load User Cal		
Analog Input Calibration		
<	>	
Edit	Return	
	and the second	

Thermister Calibration

This will be set at Super Systems and should not need to be adjusted by the end user. It allows for the sample gas temperature and the ambient temperature inside the instrument to be set. This should only be performed after the instrument has been powered on long enough for it to achieve temperature equilibrium.

<u>SuperCalc</u>

NOTE: This option requires zone selection.

SuperCalc is a proprietary software tool developed by SSI to allow the user to perform different scenarios and view the resulting percent carbon. It allows the user to enter gas percentages, probe information, and temperatures to see the effects of each variable on the calculated percent carbon. The data on this screen is independent of any values that are determined by the MZA 6010, and it is only provided as a reference tool.

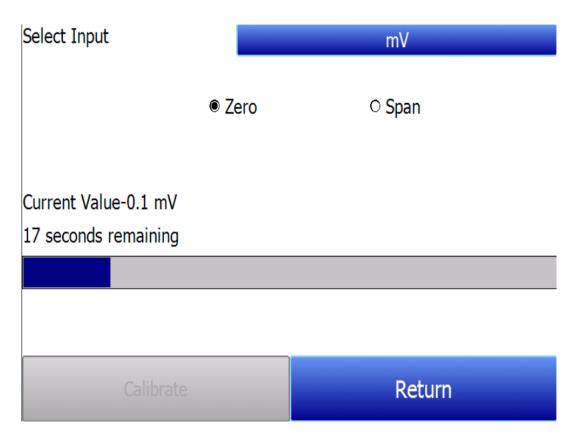
Set User Cal / Load User Cal

This feature allows the user to create new factory default calibration settings for the sensor. Instead of reverting to the factory calibration values, it can revert back to different calibration settings. This is accomplished by first setting the user calibration values. At any time after they are set, they can be restored by selecting Load User Cal.

Analog Input Calibration

NOTE: This option requires zone selection.

The True Temp MZA 6010 is available as a non-standard option. If equipped with an analog input card, it will be calibrated at the factory before the system is shipped. Optionally, you can verify the calibration or re-calibrate the unit at a later time if desired. The Analog Input Calibration includes Zero and Span calibrations for millivolt input and calibration of the actual thermocouple inputs based on the type of thermocouple wire used (the MZA 6010 supports calibration with type "K" and type "S" wire). This section provides more information on performing those calibrations, if you wish to perform them. Note the warning below.


IMPORTANT!

SSi strongly recommends that anyone who performs these calibrations have previous experience with and strong working knowledge of this type of procedure. If in doubt, contact SSi at 513-772-0060 to request assistance or to have the unit returned to the factory for calibration. An improperly performed calibration will significantly impact temperature readings in a negative way.

To perform a millivolt calibration (Zero and Span):

Needed: Copper wire (<u>not</u> thermocouple wire), millivolt sourcing device

- 1. Open the Analog Input Calibration page.
- 2. Make sure that the selected input at the top of the screen is **mV**.
- 3. Prepare the millivolt sourcing device. This device should be capable of sourcing a specified raw voltage between 0 and 1 volt.
- 4. Connect the copper wire from the millivolt device to the white input jack labeled "CU" (uncompensated) on the side of the case.
- 5. Tap **Zero** on the touch screen.
- 6. Configure the millivolt sourcing device to deliver zero millivolts.
- 7. Wait for the "Current Value" displayed on the screen to get as close to zero as possible.
- 8. Tap **Calibrate.** Tap "Yes" when asked if you want to proceed with the calibration. A progress indicator will appear.

- 9. When the process completes, Zero calibration is finished.
- 10. Tap **Span** on the touch screen.
- 11. Configure the millivolt sourcing device to deliver the desired voltage at the high end of the desired span.
- 12. Wait for the "Current Value" displayed on the screen to get as close as possible to the voltage being delivered by the millivolt sourcing device.
- 13. Tap **Calibrate.** Tap "Yes" when asked if you want to proceed with the calibration. A progress indicator will appear.

Select Input		mV
Suggested Target	○ Zero	Span
1000.0		
Current Value1005.0 mV	,	
Idle		
Calibrate		Return

14. When the process completes, Span calibration is finished.

To perform a temperature calibration ("Cold Junction Trim"):

Needed: Thermocouple wire type "S" and/or "K", temperature sourcing device

- 1. Open the Analog Input Calibration page.
- 2. Make sure that the selected input at the top of the screen is **T/C K** or **T/C S**, depending on which thermocouple wire type you are using.

T/C S
Return

- 3. Prepare the temperature sourcing device. This device should be capable of sourcing a temperature from type "S" and type "K" thermocouple types.
- 4. Connect the thermocouple wire from the temperature sourcing device to the appropriate input on the side of the case.
- 5. Enter the desired temperature value based on which to deliver a corresponding voltage.
- 6. Configure the temperature sourcing device to deliver the proper voltage.
- 7. Wait for the "Current Value" displayed on the screen to get as close to the target voltage as possible.
- 8. Tap **Calibrate.** Tap "Yes" when asked if you want to proceed with the calibration. A progress indicator will appear.
- 9. When the process completes, temperature calibration is finished.

Shut Down Interface

Use this option to shut down the touch screen interface for the MZA 6010. <u>It is recommended that you not</u> shut down the screen interface unless you are following technical support instructions from SSi or you are preparing to power down the MZA 6010 system.

Select Part Numbers and Internal Components

The following items can be purchased as needed for the MZA 6010.

Part Number	Description
37051	Bowl Filter Element
20264	Ceramic Lined Sample Tubing Assembly with High Temperature Filter

Part Number	Description
13504	Span Gas Blend, 90 cubic feet, including cylinder and regulator assembly
13505	Zero Gas (Nitrogen), 90 cubic feet, including cylinder and regulator assembly
Full MZA 6010 Units	
13652	Standard 3-Gas MZA 6010 [CO, CO ₂ , & CH ₄]
13661	4-Gas MZA 6010 (Standard plus H_2 measurement)

Warranty

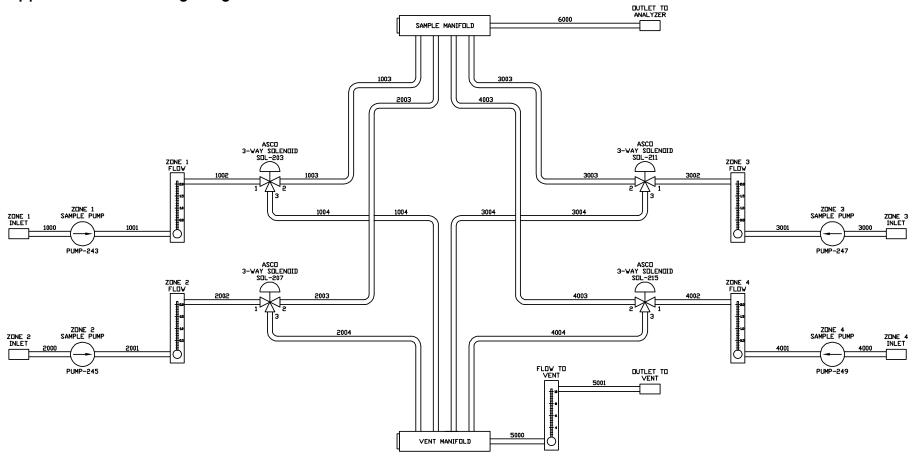
Limited Warranty for Super Systems Products:

The Limited Warranty applies to new Super Systems Inc. (SSI) products purchased direct from SSI or from an authorized SSI dealer by the original purchaser for normal use. SSI warrants that a covered product is free from defects in materials and workmanship, with the exceptions stated below.

The limited warranty does not cover damage resulting from commercial use, misuse, accident, modification or alteration to hardware or software, tampering, unsuitable physical or operating environment beyond product specifications, improper maintenance, or failure caused by a product for which SSI is not responsible. There is no warranty of uninterrupted or error-free operation. There is no warranty for loss of data—you must regularly back up the data stored on your product to a separate storage product. There is no warranty for product with removed or altered identification labels. SSI DOES NOT PROVIDE ANY OTHER WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OF IMPLIED WARRANTIES, SO THIS LIMITATION MAY NOT APPLY TO YOU. SSI is not responsible for returning to you product which is not covered by this limited warranty.

If you are having trouble with a product, before seeking limited warranty service, first follow the troubleshooting procedures that SSI or your authorized SSI dealer provides.

SSI will replace the PRODUCT with a functionally equivalent replacement product, transportation prepaid after PRODUCT has been returned to SSI for testing and evaluation. SSI may replace your product with a product that was previously used, repaired and tested to meet SSI specifications. You receive title to the replaced product at delivery to carrier at SSI shipping point. You are responsible for importation of the replaced product, if applicable. SSI will not return the original product to you; therefore, you are responsible for moving data to another media before returning to SSI, if applicable. Data Recovery is not covered under this warranty and is not part of the warranty returns process. SSI warrants that the replaced products are covered for the remainder of the original product warranty or 90 days, whichever is greater.


CAUTION!

Do not use an MZA 6010 for gas analysis with $\rm NH_3$ -containing gas. Any use of an MZA 6010 with $\rm NH_3$ -containing gas will void the product warranty.

Revision History

Rev.	Description	Date	MCO#
New	First release	10-16-2015	2154
А	Added pump delay notification explanation	9-22-2016	2191
В	Added Digital and Analog Outputs to Appendix C.	10-20-2016	2199
С	Added time zone and daylight savings note to General	5-26-2017	2217
	Setup		
D	Added Terminal information for wiring external	6-1-2017	2219
	instruments		
E	Added Register Map and Config Parameters 10/20/2017 2224		2224
	Appendices, removed electrical diagrams		
F	Adjusted filter numbers on "Unpacking" section	4/9/2018	2232
G	Added IR Matrix Tables	1/11/2019	2250
Н	added options to Furnace Temp and Probe Temp	4/25/2019	2263
	menus		

Appendix A: Plumbing Diagram

Appendix B: Inputs/Outputs on the MZA 6010

There are a number of Digital Inputs and Outputs in both the IR/interface enclosure and the pump enclosure on the MZA 6010. These are usually tied to external events or activated by an external PLC to perform various functions. The digital inputs are enabled by completing the electrical connection between each input and the ground terminal.

Digital I/O Board #1 in Main Enclosure		
Input 1	Zone 1 COF/PF Inhibit	
Input 2	Zone 2 COF/PF Inhibit	
Input 3	Zone 3 COF/PF Inhibit	
Input 4	Zone 4 COF/PF Inhibit	
Output 1	Not used	
Output 2	Alarm 2	
Output 3	Alarm 1	
Output 4	Aux. Cal Gas Enable	
Output 5	Sample Gas Enable	
Output 6	Autocal Zero Gas Enable	
Output 7	Autocal Span Gas Enable	
Output 8	Not Used	

Digital I/0	Digital I/O Board #2 in Main Enclosure		
Input 1	Zone 5 COF/PF Inhibit		
Input 2	Zone 6 COF/PF Inhibit		
Input 3	Zone 7 COF/PF Inhibit		
Input 4	Zone 8 COF/PF Inhibit		
Output 1	Zone 1 Alarm		
Output 2	Zone 2 Alarm		
Output 3	Zone 3 Alarm		
Output 4	Zone 4 Alarm		
Output 5	Zone 5 Alarm		
Output 6	Zone 6 Alarm		
Output 7	Zone 7 Alarm		
Output 8	Zone 8 Alarm		

Digital I/O Board in Zone 1-4 Pump Enclosure		
Input 1	Zone 1 Stop Sample	
Input 2	Zone 2 Stop Sample	
Input 3	Zone 3 Stop Sample	
Input 4	Zone 4 Stop Sample	
Output 1	Zone 1 Pump On/Off	
Output 2	Zone 2 Pump On/Off	
Output 3	Zone 3 Pump On/Off	
Output 4	Zone 4 Pump On/Off	
Output 5	Zone 1 Blocking Solenoid	
Output 6	Zone 2 Blocking Solenoid	
Output 7	Zone 3 Blocking Solenoid	
Output 8	Zone 4 Blocking Solenoid	

Digital I/O Board in Zone 1-4 Pump Enclosure		
Input 1	Zone 5 Stop Sample	
Input 2	Zone 6 Stop Sample	
Input 3	Zone 7 Stop Sample	
Input 4	Zone 8 Stop Sample	
Output 1	Zone 5 Pump On/Off	
Output 2	Zone 6 Pump On/Off	
Output 3	Zone 7 Pump On/Off	
Output 4	Zone 8 Pump On/Off	
Output 5	Zone 5 Blocking Solenoid	
Output 6	Zone 6 Blocking Solenoid	
Output 7	Zone 7 Blocking Solenoid	
Output 8	Zone 8 Blocking Solenoid	

Shaded areas indicate internal functions of the MZA that are not available. They are included here for reference and troubleshooting purposes.

The MZA 6010 also includes four (4) or eight (8) Analog Output Boards, depending on the model. Each board corresponds to the same-numbered zone. The outputs function as follows by default, but can be changed in the Analog Output Setup section on page 31.

Analog Board (#)	
Output 1	Zone (#) %CO
Output 2	Zone (#) %CO2
Output 3	Zone (#) %CH4
Output 4	Zone (#) Carbon Potential (%C)

Appendix C: Register Map

Register(s)	Description
file 0	
0	firmware version x 100
1	RS232 host port Baud (terms 1,2,& 3)
2	RS232 host port; Modbus slave = 1
3	RS485 Slave port Baud (0 to 13 for 1200 to 921600)
4	RS485 Slave port; 0 = MMI master, 1 = Modbus master
5	Not used reserved
6	Not used reserved
7	RS485 port Baud (0 to 13 for 1200 to 921600)
8	RS485 port; Modbus master = 1, host port = 9
9	PIC COMS baud
10	PIC coms mode (not used)
11	RS232 port baud (terms 4,5,& 6)
12	RS232 port mode: Modbus slave = 1, Modbus master = 9
13	forced to 1 for MGA
14	
15	0 = degree F; 1 = degree C
16	zone number
17	zone sequence
18	max number of zones (8 or less)
19	
20	Dwell Timer
21-25	
26	Instrument calculation enable and time per step. (ms) 10 MS min
27	start smart board detect routine
28 - 32	
33	Baud set flag port F
34	if 1 enable pressure compensation
35	pressure trim value
36-42	
43	Startup pressure reading kPa * 100
44	elevation change from startup in feet * 10
45	Elevation from sea level in feet
46	pressure trim value
47	Local pressure entered for calibration
48	o2 calibration factor (10000 nom)
49	o2 zero offset
50	pressure reading in kPa * 100

Register(s)	Description
51	pressure difference due to elevation in kPa * 100
52	sea level (barometric) pressure
53	pressure in atmospheres * 1000
54	pressure in inHG * 100
55	upstream pressure reading in kPa * 100
56	upstream sea level (barometric) pressure
57	upstream pressure in atmospheres * 1000
58	upstream pressure in inHG * 100
59	pressure sensor and calculation select;
60	pressure diff upstream to downstream in kPa * 100
61	sample flow
62-63	
64	flow zero offset
65	flow span value
66	
67	Dualpro process factor register
68	LED D2 ON time in milliseconds
69	LED D2 OFF time in milliseconds
70	
71	must be 123 to accept cal request for cell
72-73	
74	Web change enable; 0 = disable, 1 = enable
75	
76	Sample/Pump ON delay same value all zones
77	Sample/Pump OFF delay same value all zones
78-79	
80	H2 zero gas % times 100 (xx.xx)
81	H2 span gas % times 100 (xx.xx)
82	hydrogen cell calibration request; 1 = zero, 2 = span
83	Low Dew point cell source;0 = not used, 1 thru 40 = Smart AIB input number
84	Present reading from low dew point cell; xxx.x in deg C or def F
85 - 92	Zone low dew point data (reg 85 - 92)
93	
94	O2 data source: 0 = O2_blk, 1 thru 40 = Smart AIB input number
95	Est temperature of the lambda probe based on degree
96	pump run time
97	
98	

Register(s)	Description
99	
100	local cooler ON set point
101	local cooler OFF set point
102	local temperature x 10 in deg F or C based on degree
103	Auto cal interval in minutes 0 = 0FF
104	Auto Zero interval in minutes 0 = 0FF
105	Auto data display time at end of seq
106	purge time before cal or zero
107	if auto cal is avail this is 1
108	Zone alarm relays output desired states
109	relays output desired states:0 = pump, 1 = Alarm 2, 2 = Alarm 1, 3 = Aux cal gas, 4 = Sample, 5 = ACZ gas, 6 = ACZ span gas, 7 = AC/cooler on
110	bits 0 - 3 = sample relays zones 1 - 4; bits 4 - 7 = Zone ON zones 1 - 4
111	bits 0 - 3 = sample relays zones 5 - 8; bits 4 - 7 = Zone ON zones 5 - 8
112	
113	02 data mantissa
114	O2 data exponent
115	HI range CO2 data xx.xx%
116	CO data xx.xx%
117	CO2 data x.xxxx% max 3.0000%
118	O2 data xx.x%
119	CH4 data xx.xx%
120	Ratio CO2/CO
128	IR Dew point if calculated
136	IR %C
144	IR suggested COF
152	IR suggested PF
160	IR equivalent millivolts
168	sample flow at calc time
176	Calculated new factor for COF/PF adjust
184	HI range CO2 data xx.xx%
192	CO data xx.xx%
200	CO2 data x.xxxx% max 3.0000%
208	O2 data xx.x%
216	CH4 data xx.xx%
224	sample temperature
232	sample pressure upstream
240	sample pressure downstream
248-249	
Filo 2	
File 3	

Register(s)	Description
600-609	
610	IR cell seq flag
611	IR calibration requests
612	calibration mode
613	calibration timer for purge, etc
614	calibration counter
615	calibration enable CO
616	calibration enable CO2
617	calibration enable CH4
618	calibration enable CO2H
619	
620	calibration alarm bit map
621-639	
640	calibration span gas 1
641	calibration span gas 2
642	calibration span gas 3 x.xxxx
643	calibration span gas 4
644	calibration span gas 5
645	auto calibration span gas 2
646	auto calibration span gas 3 x.xxxx
647	auto calibration span gas 4
648	auto calibration span gas 5
649	aux calibration span gas 2
650	aux calibration span gas 3 x.xxxx
651	aux calibration span gas 4
652	aux calibration span gas 5
653	sample calibration span gas 2
654	sample calibration span gas 3 x.xxxx
655	sample calibration span gas 4
656	sample calibration span gas 5
657	calibration gas source; Forced to 0 for MZA
658-665	
666	
667	
668	ambient temperature trim; deg C * 100
669	gas (cell) temperature trim; deg C * 100
670	AIB board 1 input 1 type
671	AIB board 1 input 2 type
672	AIB board 1 input 3 type
673	AIB board 2 input 1 type
674	AIB board 2 input 2 type
675	AIB board 2 input 3 type

Register(s)	Description
676	AIB board 3 input 1 type
677	AIB board 3 input 2 type
678	AIB board 3 input 3 type
679	AIB board 4 input 1 type
680	AIB board 4 input 2 type
681	AIB board 4 input 3 type
682	AIB board 5 input 1 type
683	AIB board 5 input 2 type
684	AIB board 5 input 3 type
685	AIB board 6 input 1 type
686	AIB board 6 input 2 type
687	AIB board 6 input 3 type
688	AIB board 7 input 1 type
689	AIB board 7 input 2 type
690	AIB board 7 input 3 type
691	AIB board 8 input 1 type
692	AIB board 8 input 2 type
693	AIB board 8 input 3 type
694	Board number to calibrate 1 to 8
695	enables a calibration
696	CJ cal or zero/span voltage cal
697	Calibration Range register. Sets the voltage gain for a calibration.
698	bitmap of channels to be calibrated
699	Calibration value for all inputs
file 2	
700	alloy factor for calculation 10000 = 1.0000
708	default Hydrogen to use if no H2 cell 40% = 40.00
716	0 = original sin, 1 = CarbCalc_Caf1, 2 = CarbCalc Caf, 3 = COCO2 Caf1, 4 = COCO2 Caf
724	IR shim factor
732	Pressure compensation factor; 0 = off, 10 = 1.0, max 2.0
740	CH4 factor
748	IR CO compensation factor
756	pump mode; 0 = off, 1 & 2 = auto
764	mode: 0 = monitor, 1 = COF/PF adjust base on %C
772	max adjust amount
780	maximum COF/PF
788	minimum COF/PF
796	Probe ATM instrument; -1 = internal (Input 1 for MV Input 2 for TC),

Description
-2 = internal (Input 1 for MV Input 3 for TC), 0 to Probe
ATM max for external,
use -3 for manual
-4 for data in external table
Probe ATM inst number is type for inst setup [0][0];
Probe temperature instrument; -1 = internal (Input 3 for furn TC),
-2 = internal (Input 2 for furn TC), 0 to Probe TC max for external,
use -3 for manual
-4 for data in external table
Probe TC inst number + 256 is type for inst setup[1][0]
Dwell Times in seconds min 30 max 300
zone active; 0 = no, 1 = yes
Adjust/control update interval
Select CO2 for calculation: 0 = normal IR gas[2] , 1 = high range IR gas[4]
Enable IR Dew point calculation
IR dew point factor
Adjust minimum temperature
Adjust minimum millivolts
Minimum MV action; 0 = only inhibits adjust and control
sample control; 0 = off, 1 = on
Ambient temperature Low alarm limit
Ambient temperature High alarm limit
Ambient temperature Low alarm limit
Ambient temperature High alarm limit
02 cal span value 209 = 20.9%
O2 calibration req; 1 = zero, 2 = span
return code of UDPDL init()
Dac assignx => gas number * 8 + zone number
bit 12 sets output; 0 = 4 - 20MA, 1 = 0 - 20MA
Brd 1 Dac 1 assignment
Brd 1 Dac 2 assignment
Brd 1 Dac 3 assignment
Brd 1 Dac 4 assignment
Brd 1 Dac 1 zero
Brd 1 Dac 1 span
Brd 1 Dac 2 zero

9008 Brd 1 Dac 3 zero 9009 Brd 1 Dac 3 span 9010 Brd 1 Dac 4 zero 9011 Brd 1 Dac 4 span 9012 Brd 2 Dac 1 assignment 9013 Brd 2 Dac 2 assignment 9014 Brd 2 Dac 1 assignment 9015 Brd 2 Dac 1 asro 9016 Brd 2 Dac 1 asro 9017 Brd 2 Dac 1 span 9018 Brd 2 Dac 2 span 9019 Brd 2 Dac 3 span 9020 Brd 2 Dac 4 zero 9021 Brd 2 Dac 3 span 9022 Brd 2 Dac 4 zero 9023 Brd 2 Dac 4 span 9024 Brd 3 Dac 1 assignment 9025 Brd 3 Dac 1 assignment 9026 Brd 3 Dac 1 assignment 9027 Brd 3 Dac 1 zero 9028 Brd 3 Dac 1 zero 9029 Brd 3 Dac 1 span 9029 Brd 3 Dac 2 span 9030 Brd 3 Dac 2 span 9031 Brd 3 Dac 2 span 9032 Brd 3 Dac 3 span 9033 Brd 3 Dac 4 spa	Register(s)	Description
9010 Brd 1 Dac 4 zero 9011 Brd 1 Dac 4 span 9012 Brd 2 Dac 1 assignment 9013 Brd 2 Dac 2 assignment 9014 Brd 2 Dac 3 assignment 9015 Brd 2 Dac 4 assignment 9016 Brd 2 Dac 1 zero 9017 Brd 2 Dac 1 zero 9018 Brd 2 Dac 2 zero 9019 Brd 2 Dac 3 zero 9020 Brd 2 Dac 3 span 9021 Brd 2 Dac 3 span 9022 Brd 2 Dac 4 zero 9023 Brd 2 Dac 4 span 9024 Brd 3 Dac 1 assignment 9025 Brd 3 Dac 1 assignment 9026 Brd 3 Dac 1 assignment 9027 Brd 3 Dac 1 zero 9028 Brd 3 Dac 1 zero 9029 Brd 3 Dac 1 zero 9029 Brd 3 Dac 2 zero 9030 Brd 3 Dac 2 span 9031 Brd 3 Dac 4 sero 9032 Brd 3 Dac 4 sero 9033 Brd 3 Dac 4 sero 9034 Brd 3 Dac 4 zero 9035 Brd 4 Dac	9008	Brd 1 Dac 3 zero
9011 Brd 1 Dac 4 span 9012 Brd 2 Dac 1 assignment 9013 Brd 2 Dac 2 assignment 9014 Brd 2 Dac 2 assignment 9015 Brd 2 Dac 4 assignment 9016 Brd 2 Dac 1 zero 9017 Brd 2 Dac 1 zero 9018 Brd 2 Dac 2 zero 9019 Brd 2 Dac 2 zero 9019 Brd 2 Dac 3 zero 9020 Brd 2 Dac 4 sero 9021 Brd 2 Dac 4 zero 9022 Brd 2 Dac 4 zero 9023 Brd 2 Dac 4 sero 9024 Brd 3 Dac 1 assignment 9025 Brd 3 Dac 2 assignment 9026 Brd 3 Dac 1 assignment 9027 Brd 3 Dac 1 zero 9028 Brd 3 Dac 1 zero 9029 Brd 3 Dac 2 span 9030 Brd 3 Dac 3 zero 9031 Brd 3 Dac 3 zero 9032 Brd 3 Dac 4 zero 9033 Brd 3 Dac 4 zero 9034 Brd 4 Dac 1 assignment 9035 Brd 4 Dac 1 assignment 9036 <	9009	Brd 1 Dac 3 span
9012 Brd 2 Dac 1 assignment 9013 Brd 2 Dac 2 assignment 9014 Brd 2 Dac 3 assignment 9015 Brd 2 Dac 4 assignment 9016 Brd 2 Dac 1 zero 9017 Brd 2 Dac 2 zero 9018 Brd 2 Dac 2 span 9020 Brd 2 Dac 3 zero 9021 Brd 2 Dac 3 span 9022 Brd 2 Dac 4 zero 9023 Brd 2 Dac 4 zero 9024 Brd 3 Dac 1 assignment 9025 Brd 3 Dac 2 assignment 9026 Brd 3 Dac 2 assignment 9027 Brd 3 Dac 1 assignment 9028 Brd 3 Dac 1 zero 9029 Brd 3 Dac 1 zero 9029 Brd 3 Dac 1 zero 9029 Brd 3 Dac 2 zero 9030 Brd 3 Dac 2 span 9031 Brd 3 Dac 3 assignment 9032 Brd 3 Dac 3 span 9034 Brd 3 Dac 4 assignment 9035 Brd 3 Dac 4 span 9036 Brd 4 Dac 3 span 9037 Brd 4 Dac 1 span 9038	9010	Brd 1 Dac 4 zero
9013 Brd 2 Dac 2 assignment 9014 Brd 2 Dac 3 assignment 9015 Brd 2 Dac 4 assignment 9016 Brd 2 Dac 1 zero 9017 Brd 2 Dac 2 zero 9018 Brd 2 Dac 2 span 9020 Brd 2 Dac 3 zero 9021 Brd 2 Dac 3 span 9022 Brd 2 Dac 4 zero 9023 Brd 2 Dac 4 span 9024 Brd 3 Dac 1 assignment 9025 Brd 3 Dac 2 assignment 9026 Brd 3 Dac 2 assignment 9027 Brd 3 Dac 2 assignment 9028 Brd 3 Dac 2 assignment 9029 Brd 3 Dac 1 span 9029 Brd 3 Dac 2 zero 9030 Brd 3 Dac 2 span 9030 Brd 3 Dac 2 span 9031 Brd 3 Dac 2 span 9032 Brd 3 Dac 2 span 9033 Brd 3 Dac 4 assignment 9034 Brd 3 Dac 4 zero 9035 Brd 4 Dac 1 assignment 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 1 assignment 9	9011	Brd 1 Dac 4 span
9014 Brd 2 Dac 3 assignment 9015 Brd 2 Dac 4 assignment 9016 Brd 2 Dac 1 zero 9017 Brd 2 Dac 2 zero 9018 Brd 2 Dac 2 span 9020 Brd 2 Dac 3 span 9021 Brd 2 Dac 4 sero 9022 Brd 2 Dac 4 zero 9023 Brd 2 Dac 4 span 9024 Brd 3 Dac 1 assignment 9025 Brd 3 Dac 2 assignment 9026 Brd 3 Dac 2 assignment 9027 Brd 3 Dac 2 assignment 9028 Brd 3 Dac 2 assignment 9029 Brd 3 Dac 2 assignment 9029 Brd 3 Dac 1 zero 9030 Brd 3 Dac 2 zero 9031 Brd 3 Dac 2 span 9032 Brd 3 Dac 3 zero 9033 Brd 3 Dac 4 zero 9034 Brd 3 Dac 4 zero 9035 Brd 3 Dac 4 zero 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 1 assignment 9038 Brd 4 Dac 2 assignment 9039 Brd 4 Dac 1 zero 9038 <td>9012</td> <td>Brd 2 Dac 1 assignment</td>	9012	Brd 2 Dac 1 assignment
9015 Brd 2 Dac 4 assignment 9016 Brd 2 Dac 1 zero 9017 Brd 2 Dac 1 span 9018 Brd 2 Dac 2 zero 9019 Brd 2 Dac 2 span 9020 Brd 2 Dac 3 zero 9021 Brd 2 Dac 3 span 9022 Brd 2 Dac 4 zero 9023 Brd 2 Dac 4 span 9024 Brd 3 Dac 1 assignment 9025 Brd 3 Dac 2 assignment 9026 Brd 3 Dac 2 assignment 9027 Brd 3 Dac 2 assignment 9028 Brd 3 Dac 1 assignment 9029 Brd 3 Dac 2 assignment 9029 Brd 3 Dac 1 zero 9029 Brd 3 Dac 2 span 9030 Brd 3 Dac 2 span 9031 Brd 3 Dac 2 span 9032 Brd 3 Dac 3 span 9033 Brd 3 Dac 4 zero 9034 Brd 3 Dac 4 zero 9035 Brd 3 Dac 4 span 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 1 assignment 9038 Brd 4 Dac 2 assignment 9039	9013	Brd 2 Dac 2 assignment
9016 Brd 2 Dac 1 zero 9017 Brd 2 Dac 1 span 9018 Brd 2 Dac 2 zero 9019 Brd 2 Dac 3 zero 9020 Brd 2 Dac 3 zero 9021 Brd 2 Dac 3 zero 9022 Brd 2 Dac 4 zero 9023 Brd 2 Dac 4 span 9024 Brd 3 Dac 1 assignment 9025 Brd 3 Dac 2 assignment 9026 Brd 3 Dac 2 assignment 9027 Brd 3 Dac 2 assignment 9028 Brd 3 Dac 1 zero 9029 Brd 3 Dac 2 zero 9030 Brd 3 Dac 2 span 9031 Brd 3 Dac 3 zero 9032 Brd 3 Dac 4 zero 9033 Brd 3 Dac 4 segn 9034 Brd 3 Dac 4 segn 9035 Brd 3 Dac 4 segn 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 2 assignment 9038 Brd 4 Dac 1 assignment 9039 Brd 4 Dac 2 assignment 9039 Brd 4 Dac 2 assignment 9039 Brd 4 Dac 2 assignment 9039	9014	Brd 2 Dac 3 assignment
9017 Brd 2 Dac 1 span 9018 Brd 2 Dac 2 zero 9019 Brd 2 Dac 2 span 9020 Brd 2 Dac 3 zero 9021 Brd 2 Dac 3 span 9022 Brd 2 Dac 4 zero 9023 Brd 2 Dac 4 span 9024 Brd 3 Dac 1 assignment 9025 Brd 3 Dac 2 assignment 9026 Brd 3 Dac 2 assignment 9027 Brd 3 Dac 4 assignment 9028 Brd 3 Dac 1 zero 9029 Brd 3 Dac 2 zero 9030 Brd 3 Dac 2 zero 9031 Brd 3 Dac 3 zero 9032 Brd 3 Dac 4 zero 9033 Brd 3 Dac 4 zero 9034 Brd 3 Dac 4 sero 9035 Brd 4 Dac 1 assignment 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 2 assignment 9038 Brd 4 Dac 2 assignment 9039 Brd 4 Dac 2 assignment 9	9015	Brd 2 Dac 4 assignment
9018 Brd 2 Dac 2 zero 9019 Brd 2 Dac 3 zero 9020 Brd 2 Dac 3 span 9021 Brd 2 Dac 4 zero 9022 Brd 2 Dac 4 zero 9023 Brd 2 Dac 4 span 9024 Brd 3 Dac 1 assignment 9025 Brd 3 Dac 2 assignment 9026 Brd 3 Dac 2 assignment 9027 Brd 3 Dac 4 assignment 9028 Brd 3 Dac 1 zero 9029 Brd 3 Dac 2 zero 9030 Brd 3 Dac 2 span 9031 Brd 3 Dac 2 zero 9032 Brd 3 Dac 3 zero 9033 Brd 3 Dac 4 zero 9034 Brd 3 Dac 4 zero 9035 Brd 4 Dac 1 assignment 9036 Brd 4 Dac 2 assignment 9037 Brd 4 Dac 2 assignment 9038 Brd 4 Dac 2 assignment 9039 Brd 4 Dac 2 assignment 9031 Brd 4 Dac 2 assignment 9035 Brd 4 Dac 2 assignment 9036 Brd 4 Dac 2 assignment 9037 Brd 4 Dac 2 assignment	9016	Brd 2 Dac 1 zero
9019 Brd 2 Dac 2 span 9020 Brd 2 Dac 3 zero 9021 Brd 2 Dac 3 span 9022 Brd 2 Dac 4 zero 9023 Brd 2 Dac 4 span 9024 Brd 3 Dac 1 assignment 9025 Brd 3 Dac 2 assignment 9026 Brd 3 Dac 2 assignment 9027 Brd 3 Dac 4 assignment 9028 Brd 3 Dac 1 zero 9029 Brd 3 Dac 1 zero 9030 Brd 3 Dac 2 zero 9031 Brd 3 Dac 2 span 9032 Brd 3 Dac 4 zero 9033 Brd 3 Dac 4 zero 9034 Brd 3 Dac 4 zero 9035 Brd 3 Dac 4 span 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 1 assignment 9038 Brd 4 Dac 2 assignment 9039 Brd 4 Dac 1 assignment 9039 Brd 4 Dac 1 assignment 9039 Brd 4 Dac 2 assignment 9039 Brd 4 Dac 3 assignment 9039 Brd 4 Dac 1 zero 9040 Brd 4 Dac 1 zero 9041 <td>9017</td> <td>Brd 2 Dac 1 span</td>	9017	Brd 2 Dac 1 span
9020 Brd 2 Dac 3 zero 9021 Brd 2 Dac 3 span 9022 Brd 2 Dac 4 zero 9023 Brd 2 Dac 4 span 9024 Brd 3 Dac 1 assignment 9025 Brd 3 Dac 2 assignment 9026 Brd 3 Dac 2 assignment 9027 Brd 3 Dac 4 assignment 9028 Brd 3 Dac 1 zero 9029 Brd 3 Dac 1 zero 9030 Brd 3 Dac 2 zero 9031 Brd 3 Dac 2 span 9032 Brd 3 Dac 4 zero 9033 Brd 3 Dac 4 zero 9034 Brd 3 Dac 4 span 9035 Brd 3 Dac 4 zero 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 1 assignment 9038 Brd 4 Dac 2 assignment 9039 Brd 4 Dac 1 assignment 9039 Brd 4 Dac 1 zero 9040 Brd 4 Dac 1 zero 9041 Brd 4 Dac 1 zero 9042 Brd 4 Dac 2 zero 9043 Brd 4 Dac 3 zero 9044 Brd 4 Dac 3 zero 9045 Brd	9018	Brd 2 Dac 2 zero
9021 Brd 2 Dac 3 span 9022 Brd 2 Dac 4 zero 9023 Brd 2 Dac 4 span 9024 Brd 3 Dac 1 assignment 9025 Brd 3 Dac 2 assignment 9026 Brd 3 Dac 2 assignment 9027 Brd 3 Dac 4 assignment 9028 Brd 3 Dac 1 zero 9029 Brd 3 Dac 1 span 9030 Brd 3 Dac 2 zero 9031 Brd 3 Dac 2 span 9032 Brd 3 Dac 3 span 9033 Brd 3 Dac 4 zero 9034 Brd 3 Dac 4 zero 9035 Brd 3 Dac 4 span 9036 Brd 4 Dac 3 span 9037 Brd 4 Dac 2 assignment 9038 Brd 4 Dac 2 assignment 9039 Brd 4 Dac 1 assignment 9039 Brd 4 Dac 1 assignment 9039 Brd 4 Dac 1 zero 9040 Brd 4 Dac 2 zero 9041 Brd 4 Dac 2 zero 9042 Brd 4 Dac 2 zero 9043 Brd 4 Dac 3 zero 9044 Brd 4 Dac 3 zero 9045 Brd	9019	Brd 2 Dac 2 span
9022 Brd 2 Dac 4 zero 9023 Brd 2 Dac 4 span 9024 Brd 3 Dac 1 assignment 9025 Brd 3 Dac 2 assignment 9026 Brd 3 Dac 2 assignment 9027 Brd 3 Dac 4 assignment 9028 Brd 3 Dac 1 zero 9029 Brd 3 Dac 1 span 9030 Brd 3 Dac 2 zero 9031 Brd 3 Dac 3 zero 9032 Brd 3 Dac 4 zero 9033 Brd 3 Dac 4 zero 9034 Brd 3 Dac 4 zero 9035 Brd 4 Dac 1 assignment 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 2 assignment 9038 Brd 4 Dac 1 assignment 9039 Brd 4 Dac 1 zero 9040 Brd 4 Dac 1 zero 9041 Brd 4 Dac 2 zero 9042 Brd 4 Dac 2 zero 9043 Brd 4 Dac 3 zero 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 zero 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 zero 9046 Brd	9020	Brd 2 Dac 3 zero
9023 Brd 2 Dac 4 span 9024 Brd 3 Dac 1 assignment 9025 Brd 3 Dac 2 assignment 9026 Brd 3 Dac 3 assignment 9027 Brd 3 Dac 4 assignment 9028 Brd 3 Dac 1 zero 9029 Brd 3 Dac 1 zero 9030 Brd 3 Dac 2 zero 9031 Brd 3 Dac 3 zero 9032 Brd 3 Dac 3 span 9033 Brd 3 Dac 4 zero 9034 Brd 3 Dac 4 span 9035 Brd 3 Dac 4 zero 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 2 assignment 9038 Brd 4 Dac 2 assignment 9039 Brd 4 Dac 1 assignment 9039 Brd 4 Dac 1 zero 9040 Brd 4 Dac 1 zero 9041 Brd 4 Dac 2 zero 9042 Brd 4 Dac 2 zero 9043 Brd 4 Dac 3 zero 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 zero 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 span 9046 Brd	9021	Brd 2 Dac 3 span
9024 Brd 3 Dac 1 assignment 9025 Brd 3 Dac 2 assignment 9026 Brd 3 Dac 3 assignment 9027 Brd 3 Dac 4 assignment 9028 Brd 3 Dac 1 zero 9029 Brd 3 Dac 2 zero 9030 Brd 3 Dac 2 span 9031 Brd 3 Dac 2 span 9032 Brd 3 Dac 3 zero 9033 Brd 3 Dac 4 zero 9034 Brd 3 Dac 4 span 9035 Brd 3 Dac 4 zero 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 2 assignment 9038 Brd 4 Dac 2 assignment 9039 Brd 4 Dac 1 assignment 9039 Brd 4 Dac 1 zero 9040 Brd 4 Dac 1 zero 9041 Brd 4 Dac 1 zero 9042 Brd 4 Dac 2 zero 9043 Brd 4 Dac 3 zero 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 zero 9046 Brd 4 Dac 3 zero 9047 Brd 4 Dac 4 zero 9045 Brd 4 Dac 3 zero 9045 Brd	9022	Brd 2 Dac 4 zero
9025 Brd 3 Dac 2 assignment 9026 Brd 3 Dac 3 assignment 9027 Brd 3 Dac 4 assignment 9028 Brd 3 Dac 1 zero 9029 Brd 3 Dac 1 span 9030 Brd 3 Dac 2 zero 9031 Brd 3 Dac 2 span 9032 Brd 3 Dac 3 zero 9033 Brd 3 Dac 4 zero 9034 Brd 3 Dac 4 span 9035 Brd 3 Dac 4 zero 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 2 assignment 9038 Brd 4 Dac 2 assignment 9039 Brd 4 Dac 1 assignment 9039 Brd 4 Dac 1 zero 9040 Brd 4 Dac 1 span 9041 Brd 4 Dac 2 zero 9042 Brd 4 Dac 2 zero 9043 Brd 4 Dac 3 zero 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 zero 9046 Brd 4 Dac 3 zero 9047 Brd 4 Dac 4 zero 9045 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 zero 9046 Brd 4 Dac	9023	Brd 2 Dac 4 span
9026 Brd 3 Dac 3 assignment 9027 Brd 3 Dac 4 assignment 9028 Brd 3 Dac 1 zero 9029 Brd 3 Dac 1 span 9030 Brd 3 Dac 2 zero 9031 Brd 3 Dac 2 span 9032 Brd 3 Dac 3 zero 9033 Brd 3 Dac 4 zero 9034 Brd 3 Dac 4 zero 9035 Brd 3 Dac 4 span 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 2 assignment 9038 Brd 4 Dac 2 assignment 9039 Brd 4 Dac 1 assignment 9039 Brd 4 Dac 2 assignment 9039 Brd 4 Dac 1 zero 9040 Brd 4 Dac 1 zero 9041 Brd 4 Dac 2 zero 9042 Brd 4 Dac 2 zero 9043 Brd 4 Dac 3 zero 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 zero 9046 Brd 4 Dac 3 zero 9047 Brd 4 Dac 4 zero 9046 Brd 4 Dac 4 zero 9047 Brd 4 Dac 4 zero	9024	Brd 3 Dac 1 assignment
9027 Brd 3 Dac 4 assignment 9028 Brd 3 Dac 1 zero 9029 Brd 3 Dac 1 span 9030 Brd 3 Dac 2 zero 9031 Brd 3 Dac 2 span 9032 Brd 3 Dac 3 zero 9033 Brd 3 Dac 3 span 9034 Brd 3 Dac 4 zero 9035 Brd 3 Dac 4 span 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 2 assignment 9038 Brd 4 Dac 3 assignment 9039 Brd 4 Dac 4 assignment 9039 Brd 4 Dac 1 zero 9040 Brd 4 Dac 1 zero 9041 Brd 4 Dac 2 zero 9042 Brd 4 Dac 2 zero 9043 Brd 4 Dac 3 zero 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 zero 9046 Brd 4 Dac 3 zero 9047 Brd 4 Dac 4 zero	9025	Brd 3 Dac 2 assignment
9028 Brd 3 Dac 1 zero 9029 Brd 3 Dac 1 span 9030 Brd 3 Dac 2 zero 9031 Brd 3 Dac 2 span 9032 Brd 3 Dac 3 zero 9033 Brd 3 Dac 3 span 9034 Brd 3 Dac 4 zero 9035 Brd 3 Dac 4 zero 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 2 assignment 9038 Brd 4 Dac 3 assignment 9039 Brd 4 Dac 1 zero 9040 Brd 4 Dac 1 zero 9041 Brd 4 Dac 2 zero 9042 Brd 4 Dac 2 zero 9043 Brd 4 Dac 2 zero 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 span 9046 Brd 4 Dac 4 zero 9047 Brd 4 Dac 4 zero	9026	Brd 3 Dac 3 assignment
9029 Brd 3 Dac 1 span 9030 Brd 3 Dac 2 zero 9031 Brd 3 Dac 2 span 9032 Brd 3 Dac 3 zero 9033 Brd 3 Dac 3 span 9034 Brd 3 Dac 4 zero 9035 Brd 3 Dac 4 span 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 2 assignment 9038 Brd 4 Dac 3 assignment 9039 Brd 4 Dac 1 zero 9040 Brd 4 Dac 1 zero 9041 Brd 4 Dac 2 zero 9042 Brd 4 Dac 2 span 9043 Brd 4 Dac 3 zero 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 span 9046 Brd 4 Dac 4 zero	9027	Brd 3 Dac 4 assignment
9030 Brd 3 Dac 2 zero 9031 Brd 3 Dac 2 span 9032 Brd 3 Dac 3 zero 9033 Brd 3 Dac 3 span 9034 Brd 3 Dac 4 zero 9035 Brd 3 Dac 4 span 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 2 assignment 9038 Brd 4 Dac 3 assignment 9039 Brd 4 Dac 4 assignment 9040 Brd 4 Dac 1 zero 9041 Brd 4 Dac 2 span 9042 Brd 4 Dac 2 span 9043 Brd 4 Dac 3 zero 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 span 9046 Brd 4 Dac 4 zero 9047 Brd 4 Dac 4 span	9028	Brd 3 Dac 1 zero
9031 Brd 3 Dac 2 span 9032 Brd 3 Dac 3 zero 9033 Brd 3 Dac 3 span 9034 Brd 3 Dac 4 zero 9035 Brd 3 Dac 4 span 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 2 assignment 9038 Brd 4 Dac 2 assignment 9039 Brd 4 Dac 1 zero 9041 Brd 4 Dac 1 span 9042 Brd 4 Dac 2 span 9043 Brd 4 Dac 3 zero 9044 Brd 4 Dac 3 span 9045 Brd 4 Dac 3 span 9046 Brd 4 Dac 4 zero 9047 Brd 4 Dac 4 span	9029	Brd 3 Dac 1 span
9032 Brd 3 Dac 3 zero 9033 Brd 3 Dac 3 span 9034 Brd 3 Dac 4 zero 9035 Brd 3 Dac 4 zero 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 2 assignment 9038 Brd 4 Dac 3 assignment 9039 Brd 4 Dac 4 assignment 9040 Brd 4 Dac 1 zero 9041 Brd 4 Dac 2 zero 9043 Brd 4 Dac 2 span 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 span 9046 Brd 4 Dac 4 zero 9047 Brd 4 Dac 4 span	9030	Brd 3 Dac 2 zero
9033 Brd 3 Dac 3 span 9034 Brd 3 Dac 4 zero 9035 Brd 3 Dac 4 span 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 2 assignment 9038 Brd 4 Dac 3 assignment 9039 Brd 4 Dac 4 assignment 9040 Brd 4 Dac 1 zero 9041 Brd 4 Dac 2 zero 9043 Brd 4 Dac 2 span 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 span 9046 Brd 4 Dac 4 zero 9047 Brd 4 Dac 4 span	9031	Brd 3 Dac 2 span
9034 Brd 3 Dac 4 zero 9035 Brd 3 Dac 4 span 9036 Brd 4 Dac 1 assignment 9037 Brd 4 Dac 2 assignment 9038 Brd 4 Dac 3 assignment 9039 Brd 4 Dac 4 assignment 9040 Brd 4 Dac 1 zero 9041 Brd 4 Dac 2 zero 9043 Brd 4 Dac 2 span 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 span 9046 Brd 4 Dac 4 zero 9047 Brd 4 Dac 4 span	9032	Brd 3 Dac 3 zero
9035Brd 3 Dac 4 span9036Brd 4 Dac 1 assignment9037Brd 4 Dac 2 assignment9038Brd 4 Dac 3 assignment9039Brd 4 Dac 4 assignment9040Brd 4 Dac 1 zero9041Brd 4 Dac 1 span9042Brd 4 Dac 2 zero9043Brd 4 Dac 3 zero9044Brd 4 Dac 3 span9045Brd 4 Dac 3 span9046Brd 4 Dac 4 zero9047Brd 4 Dac 4 span	9033	Brd 3 Dac 3 span
9036Brd 4 Dac 1 assignment9037Brd 4 Dac 2 assignment9038Brd 4 Dac 3 assignment9039Brd 4 Dac 4 assignment9040Brd 4 Dac 1 zero9041Brd 4 Dac 1 span9042Brd 4 Dac 2 zero9043Brd 4 Dac 2 span9044Brd 4 Dac 3 zero9045Brd 4 Dac 3 span9046Brd 4 Dac 4 zero9047Brd 4 Dac 4 span	9034	Brd 3 Dac 4 zero
9037Brd 4 Dac 2 assignment9038Brd 4 Dac 3 assignment9039Brd 4 Dac 4 assignment9040Brd 4 Dac 1 zero9041Brd 4 Dac 1 span9042Brd 4 Dac 2 zero9043Brd 4 Dac 2 span9044Brd 4 Dac 3 zero9045Brd 4 Dac 4 zero9046Brd 4 Dac 4 span	9035	Brd 3 Dac 4 span
9038Brd 4 Dac 3 assignment9039Brd 4 Dac 4 assignment9040Brd 4 Dac 1 zero9041Brd 4 Dac 1 span9042Brd 4 Dac 2 zero9043Brd 4 Dac 2 span9044Brd 4 Dac 3 zero9045Brd 4 Dac 3 span9046Brd 4 Dac 4 zero9047Brd 4 Dac 4 span	9036	Brd 4 Dac 1 assignment
9039 Brd 4 Dac 4 assignment 9040 Brd 4 Dac 1 zero 9041 Brd 4 Dac 1 span 9042 Brd 4 Dac 2 zero 9043 Brd 4 Dac 2 span 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 4 zero 9046 Brd 4 Dac 4 zero 9047 Brd 4 Dac 4 span	9037	Brd 4 Dac 2 assignment
9040 Brd 4 Dac 1 zero 9041 Brd 4 Dac 1 span 9042 Brd 4 Dac 2 zero 9043 Brd 4 Dac 2 span 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 span 9046 Brd 4 Dac 4 zero 9047 Brd 4 Dac 4 span	9038	Brd 4 Dac 3 assignment
9041 Brd 4 Dac 1 span 9042 Brd 4 Dac 2 zero 9043 Brd 4 Dac 2 span 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 span 9046 Brd 4 Dac 4 zero 9047 Brd 4 Dac 4 span	9039	Brd 4 Dac 4 assignment
9042 Brd 4 Dac 2 zero 9043 Brd 4 Dac 2 span 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 span 9046 Brd 4 Dac 4 zero 9047 Brd 4 Dac 4 span	9040	Brd 4 Dac 1 zero
9043 Brd 4 Dac 2 span 9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 span 9046 Brd 4 Dac 4 zero 9047 Brd 4 Dac 4 span	9041	Brd 4 Dac 1 span
9044 Brd 4 Dac 3 zero 9045 Brd 4 Dac 3 span 9046 Brd 4 Dac 4 zero 9047 Brd 4 Dac 4 span	9042	Brd 4 Dac 2 zero
9045 Brd 4 Dac 3 span 9046 Brd 4 Dac 4 zero 9047 Brd 4 Dac 4 span	9043	Brd 4 Dac 2 span
9046 Brd 4 Dac 4 zero 9047 Brd 4 Dac 4 span	9044	Brd 4 Dac 3 zero
9047 Brd 4 Dac 4 span	9045	Brd 4 Dac 3 span
	9046	Brd 4 Dac 4 zero
9048 - 9095	9047	Brd 4 Dac 4 span
	9048 -9095	

Register(s)	Description
file 4 [0][]	
9100 - 9107	Bit map of states of each zone.
	Bits 0 to 8 why not sampling; 0 = 0K, 1 = blocking sample.
	bit 0 = Zone activeX == 0, this clears all other bits.
	bit 1 = pump modeX == 0
	bit 2 = Digital input blocking sample
	bit 3 = base statusX = 0 (may be ON delay)
	bit 4 = Min TC (note if set Min MV is not tested)
	bit 5 = Min MV
	bit 6 = calibration
	bit 7 = Auto cal
	bit 8 = sample controlX == 0 (probably caused by one
	of the previous)
	Bits 9 to 11
	Bits 12 to 14 blocking COF/PF adjust
	bit 12 = IR modeX not 1 or 2
	bit 13 = base status not 4
	bit 14 = digital input blocking adjust.
	Bit 15 NU
9100 - 9147	
9148	Surface carbon activity
9149	Carbon with alloy factor = 1
9150	Carbon with specified alloy factor
9151	carbon calculated from only CO and CO2 with alloy factor = 1
9152	carbon calculated from only CO and CO2 with supplied alloy factor
9153	IR %C based on original 3 gas calculation
9154	Digital inputs from Dig I/O boards
	bits 0 to 3 from brd 1, 4 to 7 from brd 2, 8 to 11 from brd 3, and 12 to 15 from brd 4
	bits 0 to 7 are PF/COF inhibit for zones 0 thru 7
	bits 8 to 15 are stop sample for zones 0 thru 7
9155	Custom sequence pointer
9156 -	first of 32 points for custom sequence
9187 9188-9190	
9100-9190	Que_[0][][] status
9191	Que_[1][]] status
9192	Que [2][]] status
9193	Que [3][]] status
9195	Que_[4][][] status

Register(s)	Description
9196	Que_[5][][] status
9197	generic que inst number
9198	generic que register
9199	generic que data
file 4 [1][]	
8900	ambient temperature; deg F x 100
8901	gas (cell) temperature, deg F x 100
8902	cell abs pressure
8903	cell differential pressure
8904	gas 1 peak to peak
8909	gas 1 level at zero (N2)
8914	gas 1 gain constant from span
8919	gas 1 reading with compensation
8924	gas 1 value
8929	gas 1 positive
8934	gas 1 negative
8939	gas 1 value with TC adjust
8944	gas 1 value with press adjust
8949	gas 1 value with both
8954	temperature ratio Tcal/T
8959	pressure ratio P/Pcal
8964	filter time in MS
8969	Integer of calibration average
8974	Integer of gas read at ave
8989	Ambient temperature pre-trim
8990	Gas temperature pre-trim
8991	Normalized Absorbance (CH4)
8992	Normalized Absorbance (CO2)
8993	Normalized Absorbance (CO)
8994	Normalized Absorbance (CO2)
8995	gas 1 p2p raw.
file 5	
8500	probe MV
8508	probe COF
8516	probe temperature
8524	probe process factor
8532	probe %C
8540	probe carbon setpoint
8548	IR temperature
8556	H2 cell in % times 100 (xx.xx)

Register(s)	Description
8564-8567	
8568	test mode CO data xx.xx
8576	test mode CO2 data x.xxxx
8584	test mode CO data xx.xx
8592	test mode CO2 data xx.xx
8600	PC_compare mode 0 = probe %C setpoint, 1 = probe %C actual
8608	Compare IR %C to probe %C or Setpoint if 0 disable.
8616	alarm bit map
	bit 0 = low flow; bit 1 = slave communications
	bit 2 = max factor; bit 3 = min factor;
	bit 4 = PC_comp alarm
	bit 5 = auto cal alarm
	bit 6 = NU
<u> </u>	bit 7 thru 15 = gas alarms (see Note below)
8624	bit 0 = FC TC; Bit 1 = PB TC
	bit 2 = PB MV; bit 3 = PB COF/PF
	bit 4 = PB %C; bit 5 = ambient temperature
	bit 6 = gas temperature
	bit 7 thru 15 not assigned.
8632	alarm 1 assignment bit mask 0 = not assigned; 1 =
	assigned
8640	alarm 2 assignment bit mask 0 = not assigned; 1 = assigned
	bits 0 to 6 are alarm_bit_map1 bits (0 to 6)
	bits 7 to 15 are alarm_bit_map bits (7 to 15)
	alarm_bit_map bits 0 to 6 are always alarm 1
8648	Calculation flag 0 = COF, 1 = MMI PF
8656	Status of base (0 = OFF, 1 = pump delay ON, 2 = sample delay, 3 = measure delay, 4 = delay OFF, 5 = ON.)
8664	interval timer for COF/PF adjust
8672	sample ON delay timer
8680	sample OFF delay timer
8688	CO2 high alarm limit
8696	CO2 low alarm limit
8704	CO high alarm limit
8712	CO low alarm limit
8720	CH4 high alarm limit
8728	CH4 low alarm limit
8736	CO2H high alarm limit
8744	CO2H low alarm limit
8752	IR %C high alarm limit
8760	IR %C low alarm limit

Register(s)	Description
8768	H2 high alarm limit
8776	H2 low alarm limit
8784	02 high alarm limit
8792	02 low alarm limit
8800	furnace TC High alarm limit
8808	furnace TC Low alarm limit
8816	probe TC High alarm limit
8824	probe TC Low alarm limit
8832	probe MV High alarm limit
8840	probe MV Low alarm limit
8848	probe COF/PF High alarm limit
8856	probe COF/PF Low alarm limit
8864	probe %C High alarm limit
8872	probe %C Low alarm limit
8880	02 data mantissa
8888	O2 data exponent
8896-8899	
file 9	
900	product ID code
901	reset logging
902	Dynamic C compiler version in hex
903	long date/time stamp in secs from
904	midnight Jan 1, 1980.
905	Hack attempts counter
906	Web access code, level 1
907	Web access code, level 2
908	SSI error handler return counts
909	Set factory defaults control, 23205 (0x5aa5) to set
910	Force user block write and read
911	Rabbit ID from ID block
912	Web CGI action
914	4 locations for IP address (14 - 17)
918	4 locations for netmask (18 - 21)
922	4 locations for gateway (22 - 25)
930	10 locations for port states
940	auto calibration interval timer
941	auto zero interval timer
942	auto cal/zero request; bit 0 = zero, bit 1 = span
943	auto cal/zero sequence

Register(s)	Description
944	sequence timer
945	auto cal/zero status
946	Flag to initiate log of Auto cal
947	Number of entries in Auto cal log file
980	4 locations for Time server IP address (120 - 123)
984	UTC time zone as a quarter hour offset from UTC must be +/- 100
	For EST with a -5 hour difference enter -20.
985	UTC update interval in days (0 to 399) 0 disables
986	UTC update flag
987	UTC result
988 - 989	
990	DAC board number. 1 thru 8
991	
992	
993	
994	
995	
996	
997	
998 - 999	
2600 - 2699	Four Quad DAC boards
2700 - 2799	Four Quad DAC boards
0 - 14	
0	DAC status = copy of COM_stat_X
1	DAC mode, 0 = counts, 1 = current
2	DAC 0 Value Current 0 to 20000
3	DAC 1 Value
4	DAC 2 Value
5	DAC 3 Value
6	DAC calibration channel
7	DAC calibration Enable
8	DAC calibration request
9	DAC calibration target value CH 1
10	DAC calibration target value CH 2
11	DAC calibration target value CH 3
12	DAC calibration target value CH 4
13	
14	

Register(s)	Description
15 to 19	
20	computed values to send to DAC
21	
22	
23	
24	
2800 -	
2899	
0	Com status for message one of the PIC to rabbit
1 - 3	comms.
4	Com status for message two of the PIC to rabbit
	comms.
5 - 15	
16	A/D 1 status register (negative)
17	A/D 1 reading, ir led on
19	A/D 1 status register (positive)
20	A/D 1 reading, ir led off
22	A/D 2 status register (negative)
23	A/D 2 reading, ir led on
25	A/D 2 status register (positive)
26	A/D 2 reading, ir led off
28	A/D 3 status register (negative)
29	A/D 3 reading, ir led on
31	A/D 3 status register (positive)
32	A/D 3 reading, ir led off
34	A/D 4 status register (negative)
35	A/D 4 reading, ir led on
37	A/D 4 status register (positive)
38	A/D 4 reading, ir led off
40	IR LED trigger time
41	time from IRLED on/off to trigger AD7739 conv.
42	internal A/D channel selector
43	ambient temperature raw counts (10 bits resolution)
44	ambient temperature trim
45	gas temperature raw counts (10 bits resolution)
46	gas temperature trim
47	absolute pressure raw counts (10 bits resolution)
48	absolute pressure trim
49	differential pressure raw counts (10 bits resolution)
50	differential pressure trim
51	digital status word

Register(s)	Description
52	Baud Rate selection variable
53 - 99	
2900 -	
2999	
2900-2903	
2904	Digital Output setpoint
2905	Digital Output actual
2906	Digital Input
2907-2913	
2914	Digital Output setpoint
2915	Digital Output actual
2916	Digital Input
2917-2923	
2924	Digital Output setpoint
2925	Digital Output actual
2926	// Digital Input
2927-2933	
2934	Digital Output setpoint
2935	Digital Output actual
2936	Digital Input
2937-2949	
2950	x curve point in MV
2951	y curve point in 10x MV (10000 = 1000.0)
2952-2999	more curve points.
2998	top curve point is forced to 3200 for x
2999	top curve point is forced to 32000 for y
3000 -	
3099	
3100 -	
3199 3200 -	
3299	
3300 -	
3399	lange and the first second
1	version number of the firmware
2	0 = °F, 1 = °C, 2 = °R, 3 = K
3	Cold Junction Temperature
8	Input type
13	Process Variable
18	enables a calibration
19	CJ cal or zero/span voltage cal
20 Super System	Calibration Range register. Sets the voltage gain for a calibration

Register(s)	Description	
21		
22	First of 5 Calibration value	
27	First of 5 calibration timers	
32	0 = no calibration, 1 = calibration in progress	
33	First of 5 calibration error calculations	
37	End of calibration registers	
38	First of 5 Scaled VDC	
3400 -		
3499		
0 - 10		
11		
12 - 77		
78		
78 - 99		
3700 -		
3799		
0 - 9		
10 -17	8 registers for zone probe MV	
18 - 25	8 registers for zone probe TC	
26 - 33	8 registers for zone furnace TC	
34 - 99		

Note:

Gas Numbers	Gas alarm bits (for register 8616):
0 = CO	$7 = CO_2$
$1 = CO_2$	8 = CO
$2 = CH_4$	$9 = CH_4$
3 = High CO2	$10 = High CO_2$
4 = IR %C	11 = IR %C
$5 = H_2$	$12 = H_2$
$6 = 0_2$	13 = O ₂
7 = Probe %C	

Appendix D: Configuration Parameters

Communication and Source Setup / IP Address	
IR Sensor IP Address	192.168.1.122
Instrument Setup / General Setup	
Temperature Units	°F
Instrument Setup / Security Settings	
Supervisor passcode	1
Configuration passcode	2
Settings specific to each zone:	
Pump Control	
Pump Status	Auto
Pump On Delay (seconds)	2
Pump Off Delay (seconds)	2
Automatic Sampling Parameters	
COF/PF Adjustment Increment	1
COF/PF Adjustment Interval	1
Minimum COF/PF Value	130
Maximum COF/PF Value	220
COF/PF Adjustment Mode	Monitor
Minimum Temperature for sampling	1490 °F
Minimum Millivolts for sampling	1030 mV
Minimum millivolt condition	also stops pump
Communication and Source Setup / Temp Sources	
Port usage	Modbus Master
Port Baud Rate	19200
Probe Temp/mV Instrument	SSI AC20
Probe Temp/mV Instrument Address	0
Furnace Temp/mV Instrument	Ssi 7EK
Furnace Temp/mV Instrument Address	0
Instrument Setup / Calculation Factors	
IR Factor	CO Factor
IR Shim Factor	180
CH4 Factor	20
Use IRF Matrix	FALSE
Use Furnace Temp for Furnace Setpoint	FALSE
Instrument Setup / Other Settings	
Enable dew point calculation	Off
Edit Active Zones	
Zone 1 Status	Active
Zone 1 Dwell Time	90
Zone 1 Pump	Auto
Zone 2 Status	Active

00
90
Auto
Active
90
Auto
Active
90
Auto
Active
90
Auto
Active
90
Auto
Active
90
Auto
Active
90
Auto
I
I
0
0

MZA 6010 Operations Manual